A man observes a car from …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
Let AB be the tower of height h

{tex}\angle A Q B = 45 ^ { \circ }{/tex}
Now, in {tex}\triangle {/tex}ABQ,
{tex}\tan 45 ^ { \circ } = \frac { A B } { B Q }{/tex}
{tex}\Rightarrow \quad 1 = \frac { h } { B Q }{/tex}
{tex}\Rightarrow {/tex} BQ = h
In {tex}\triangle A P B{/tex}
{tex}\tan 30 ^ { \circ } = \frac { A B } { P B }{/tex}
{tex}\Rightarrow \quad \frac { 1 } { \sqrt { 3 } } = \frac { h } { x + h }{/tex}
{tex}\Rightarrow \quad x + b = h \sqrt { 3 }{/tex}
i.e.,{tex} \quad x = h ( \sqrt { 3 } - 1 ){/tex}
So speed of car
{tex}V=\frac{distance}{time}=\frac{x}{12}=\frac{h(√3-1)}{12}{/tex}
Hence time taken by car to reach upto the tower
{tex}t=\frac{BQ}{V}=\frac{h}{\frac{h}{12}(√3-1)}{/tex}
{tex}=\frac{12}{√3-1}=\frac{12(√3+1)}{(√3+1)(√3-1)}{/tex}
= 6(√3 + 1) = 6 {tex}\times{/tex} (1.73 + 1)
= 6 {tex}\times{/tex} 2.73 = 16.38 minutes
{tex}{/tex}
0Thank You