From an aeroplane vertically above a …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
Let us suppose that aeroplane is at A
Suppose B and C are two consecutive kilometre stones such that
{tex}\angle \mathbf { X } \mathbf { A } \mathbf { B } = \alpha{/tex} and {tex}\angle \mathrm { YAC } = \beta{/tex}
{tex}\therefore \angle A B D = \alpha{/tex} and {tex}\angle A C D = \beta{/tex}
Let us suppose that BD = x km.
AD is height of aeroplane.
In {tex}\triangle{/tex}ADB, {tex}\frac { A D } { B D } = \tan \alpha{/tex}
{tex}\Rightarrow \quad \frac { \mathrm { AD } } { x } = \tan \alpha {/tex}
{tex}\Rightarrow x = \frac { \mathrm { AD } } { \tan \alpha }{/tex}
In {tex}\triangle{/tex}ADC, {tex}\frac { \mathrm { AD } } { \mathrm { DC } } = \tan \beta{/tex}
{tex}\Rightarrow \quad \frac { \mathrm { AD } } { 1 - x } = \tan \beta{/tex}
{tex}\Rightarrow \frac { \mathrm { AD } } { 1 - \frac { \mathrm { AD } } { \tan \alpha } } = \tan \beta{/tex}
{tex}\Rightarrow \frac { \operatorname { AD } \tan \alpha } { \tan \alpha - \mathrm { AD } } = \tan \beta{/tex}
{tex}\Rightarrow A D \tan \alpha = \tan \alpha . \tan \beta - A D \tan \beta{/tex}
{tex}\Rightarrow A D \tan \alpha + A D \tan \beta = \tan \alpha . \tan \beta{/tex}
{tex}\Rightarrow \mathbf { A D } = \frac { \tan \alpha \cdot \tan \beta } { \tan \alpha + \tan \beta }{/tex}
Hence proved.
0Thank You