No products in the cart.

If p,q are prime positive integers …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

If p,q are prime positive integers prove √p+√q is irrational
  • 1 answers

Sia ? 6 years, 4 months ago

Suppose that {tex} \sqrt { p } + \sqrt { q }{/tex} is a rational number equal to {tex} \frac { a } { b }{/tex}, where a and b are integers having no common factor.
Now, {tex} \sqrt { p } + \sqrt { q } = \frac { a } { b }{/tex}
{tex} \Rightarrow \sqrt { p } = \frac { a } { b } - \sqrt { q }{/tex}       (squaring both side)
{tex} \Rightarrow \quad ( \sqrt { p } ) ^ { 2 } = \left( \frac { a } { b } - \sqrt { q } \right) ^ { 2 }{/tex}
{tex} \Rightarrow \quad p = \frac { a ^ { 2 } } { b ^ { 2 } } - 2 \left( \frac { a } { b } \right) \sqrt { q } + q{/tex}
{tex} \Rightarrow \quad 2 \left( \frac { a } { b } \right) \sqrt { q } = \frac { a ^ { 2 } } { b ^ { 2 } } + q - p{/tex}
{tex} \Rightarrow \quad 2 \frac { a } { b } \sqrt { q } = \frac { a ^ { 2 } + b ^ { 2 } ( q - p ) } { b ^ { 2 } }{/tex}
{tex} \Rightarrow \quad \sqrt { q } = \frac { a ^ { 2 } + b ^ { 2 } ( q - p ) } { 2 a b }{/tex}
{tex} \Rightarrow \sqrt { q }{/tex} is a rational number. (because sum of two rational numbers is always rational)
This is a contradiction as {tex} \sqrt { q }{/tex} is an irrational number.
Hence, {tex} \sqrt { p } + \sqrt { q }{/tex} is an irrational number.

https://examin8.com Test

Related Questions

(A + B )²
  • 1 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
Venu Gopal has twice
  • 0 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Prove that root 8 is an irration number
  • 2 answers
X-y=5
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App