a3 =15,s10=125, find d and a10

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Muskan Shriwastva 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Here, a3 = 15
S10 = 125
We know that
an = a + (n - 1)d
{tex} \Rightarrow {/tex} a3 = a + (3 - 1)d
{tex} \Rightarrow {/tex} a3 = a + 2d
{tex} \Rightarrow {/tex} 15 = a + 2d
{tex} \Rightarrow {/tex} a + 2d = 15 ...... (1)
Again, we know that
{tex}{S_n} = \frac{n}{2}\left[ {2a + (n - 1)d} \right]{/tex}
{tex} \Rightarrow {S_{10}} = \frac{{10}}{2}\left[ {2a + (10 - 1)d} \right]{/tex}
{tex} \Rightarrow {/tex} S10 = 5(2a + 9d)
{tex} \Rightarrow {/tex} 125 = 5(2a + 9d)
{tex} \Rightarrow {/tex} 25 = 2a + 9d
{tex} \Rightarrow {/tex} 2a + 9d = 25 ....... (2)
Solving equation (1) and equation (2), we get
a = 17
d = -1
Now an = a + (n - 1)d
{tex} \Rightarrow {/tex} a10 = a + (10 - 1)d
{tex} \Rightarrow {/tex} a10 = a + 9d
{tex} \Rightarrow {/tex} a10 = 17 + 9(-1)
{tex} \Rightarrow {/tex} a10 = 17 - 9
{tex} \Rightarrow {/tex} a10 = 8
0Thank You