No products in the cart.

If the sum of first n, …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

If the sum of first n, 2n , 3n ,term of an AP be s1 , s2 , s3 respectively then prove that s3 =3 (s2 - s1 )
  • 1 answers

Sia ? 6 years, 4 months ago

Let a be the first term and d be the common difference of the given AP. Then,
S1 = sum of first n terms of the given AP,
S2 = sum of first 2n terms of the given AP,
S3 = sum of first 3n terms of the given AP.
S1 ={tex}\frac{n}{2}{/tex}{tex}\cdot{/tex}{2a+(n-1)d}, S2={tex}\frac{{2n}}{2}{/tex}{tex}\cdot{/tex}{2a+(2n-1)d}, and S3= {tex}\frac{{3n}}{2}{/tex}{tex}\cdot{/tex}{2a+(3n-1)d}
{tex}\Rightarrow{/tex}3(S2-S1) = 3{tex}\cdot{/tex}[{2na+n(2n - 1)d} - {na+{tex}\frac{1}{2}{/tex}n(n-1)d}]
= 3{tex}\cdot{/tex}[na + {tex}\frac{3}{2}{/tex}n2d-{tex}\frac{1}{2}{/tex}nd] = {tex}\frac{{3n}}{2}{/tex}{tex}\cdot{/tex}[2a+3nd - d]
= {tex}\frac{{3n}}{2}{/tex}{tex}\cdot{/tex}[2a+(3n-1)d}=S3.
Hence, S3=3(S2-S1).

https://examin8.com Test

Related Questions

Prove that root 8 is an irration number
  • 2 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
X-y=5
  • 1 answers
Venu Gopal has twice
  • 0 answers
(A + B )²
  • 1 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App