{1+an²A\1+cot²A}= {1- tanA\cotA}²= tan ²A prove …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Aditya Raj 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
{tex}= \frac { 1 + \tan ^ { 2 } A } { 1 + \cot ^ { 2 } A } = \frac { 1 + \tan ^ { 2 } A } { 1 + \frac { 1 } { \tan ^ { 2 } A } } \cdot \because \cot A = \frac { 1 } { \tan A }{/tex}
{tex}= \frac { 1 + \tan ^ { 2 } A } { \frac { \tan ^ { 2 } A + 1 } { \tan ^ { 2 } A } } = \tan ^ { 2 } A \ldots \ldots ( 1 ){/tex}
{tex}\left( \frac { 1 - \tan A } { 1 - \cot A } \right) ^ { 2 } = \left( \frac { 1 - \tan A } { 1 - \frac { 1 } { \tan A } } \right) ^ { 2 }{/tex}
{tex}= \left\{ \frac { 1 - \tan A } { \left( \frac { \tan A - 1 } { \tan A } \right) } \right\} ^ { 2 } = ( - \tan A ) ^ { 2 } = \tan ^ { 2 } A{/tex} ....... (2)
(1) and (2) taken together given the result.
0Thank You