If the zeroes of ax^3 +3bx^2 …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Vishal Jaiswal 6 years, 4 months ago
- 1 answers
Related Questions
Posted by Parinith Gowda Ms 3 months, 1 week ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 1 week ago
- 1 answers
Posted by Hari Anand 6 months ago
- 0 answers
Posted by Kanika . 4 weeks, 1 day ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
Given polynomial is f(x) = ax3 + 3bx2 + 3cx + d.
Let p-q, p, and p+q be the zeros of the polynomial f(x). Then,
Sum of the zeros = {tex}-\frac{\text { coefficient of } x^{2}}{\text { coefficient of } x^{3}}{/tex}
p - q + p + p + q = {tex}\frac{-3 b}{a}{/tex}
{tex}3 p=\frac{-3 b}{a}{/tex}
p = {tex}\frac{-b}{a}{/tex}
Since p is a zero of the polynomial f(x).
Therefore, f(p) = 0
f(p)=ap3 + 3bp2 + 3cp + d = 0
{tex}\Rightarrow{/tex}{tex}a\left(\frac{-b}{a}\right)^{3}+3 b \times\left(\frac{-b}{a}\right)^{2}+3 c \times\left(\frac{-b}{a}\right)+d=0{/tex}
{tex}\Rightarrow{/tex}{tex}\frac{-b^{3}}{a^{2}}+\frac{3 b^{3}}{a^{2}}-\frac{3 c b}{a}+d=0{/tex}
{tex}\Rightarrow{/tex}{tex}\frac{-b^{3}+3 b^{3}-3 a b c+a^{2} d}{a^{2}}=0{/tex}
{tex}\Rightarrow{/tex}2b3 - 3abc +a2d = 0
Therefore, 2b3 - 3abc + a2d = 0
Hence proved.
0Thank You