Find the nature of roots . …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Komalpreet Kaur Khattra 5 years, 8 months ago
- 1 answers
Related Questions
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 5 months ago
The given quadratic equation is
2x2 - 6x + 3= 0
Here, a = 2, b = -6, c = 3
Therefore, discriminant = b2 - 4ac
{tex}= ( - 6 ) ^ { 2 } - 4 ( 2 ) ( 3 ) = 36 - 24{/tex}
= 12 > 0
So, the given quadratic equation has two distinct real roots
Solving the quadratic equation {tex}2 x ^ { 2 } - 6 x + 3 = 0{/tex} , by the quadratic formula, {tex}x = \frac { - b \pm \sqrt { b ^ { 2 } - 4 a c } } { 2 a }{/tex}
we get {tex}= \frac { - ( - 6 ) \pm \sqrt { 12 } } { 2 ( 2 ) } = \frac { 6 \pm 2 \sqrt { 3 } } { 4 } = \frac { 3 \pm \sqrt { 3 } } { 2 }{/tex}
Therefore, the roots are {tex}\frac { 3 \pm \sqrt { 3 } } { 2 } , \text { i.e. } \frac { 3 + \sqrt { 3 } } { 2 } \text { and } \frac { 3 - \sqrt { 3 } } { 2 }{/tex}
0Thank You