In a right angled triangle if …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 5 months ago
GIVEN A right triangle ABC right-angled at A, {tex}A D \perp B C.{/tex}

TO PROVE AD2 = BD {tex}\times{/tex} CD
Since {tex}\Delta{/tex} ABD and {tex}\Delta{/tex}ACD are right triangles.
{tex}\therefore{/tex} AB2 = AD2 + BD2 ......(i)
and, AC2 = AD2 + CD2 .......(ii)
Adding equations (i) and (ii), we get
AB2 + AC2 = 2AD2 + BD2 + CD2
{tex}\Rightarrow{/tex} BC2 = 2 AD2 + BD2 + CD2 [{tex}\because{/tex} {tex}\Delta{/tex}ABC is right-angled at A {tex}\therefore{/tex} AB2 + AC2 = BC2]
{tex}\Rightarrow{/tex} (BD + CD)2 = 2AD2 + BD2 + CD2
{tex}\Rightarrow{/tex} BD2 + CD2 + 2 BD {tex}\times{/tex} CD = 2 AD2 + BD2 + CD2
{tex}\Rightarrow{/tex} 2BD {tex}\times{/tex} CD = 2 AD2
{tex}\Rightarrow{/tex} AD2 = BD {tex}\times{/tex} CD
{tex}\Rightarrow{/tex} Hence, AD2 = BD {tex}\times{/tex} CD.
0Thank You