A trees 12 m high is …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 5 months ago
Let AB be the tree of height 12 metres. Suppose the tree is broken by the wind at point C and the part CB assumes the position CO and meets the ground at O.

Let AC = x. Then, CO = CB = 1 2 - x. It is given that {tex}\angle A O C{/tex} = 60o
In {tex}\triangle O A C,{/tex} we have
{tex}\sin 60 ^ { \circ } = \frac { A C } { O C }{/tex}
{tex}\Rightarrow \quad \frac { \sqrt { 3 } } { 2 } = \frac { x } { 12 - x }{/tex}
{tex}\Rightarrow \quad 12 \sqrt { 3 } - \sqrt { 3 } x = 2 x{/tex}
{tex}\Rightarrow \quad 12 \sqrt { 3 } = x ( 2 + \sqrt { 3 } ){/tex}
{tex}\Rightarrow \quad x = \frac { 12 \sqrt { 3 } } { 2 + \sqrt { 3 } } = \frac { 12 \sqrt { 3 } } { 2 + \sqrt { 3 } } \times \frac { 2 - \sqrt { 3 } } { 2 - \sqrt { 3 } } = 12 \sqrt { 3 } ( 2 - \sqrt { 3 } ){/tex}
{tex}\Rightarrow \quad x = 24 \sqrt { 3 } - 36 = 5.569{/tex} metres
Hence, the tree is broken at a height of 5.569 metres from the ground.
0Thank You