Show that only one of the …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Aarya Rajawat 6 years, 5 months ago
- 1 answers
Related Questions
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 5 months ago
Let the number be (3q + r)
{tex}n = 3 q + r \quad 0 \leq r < 3{/tex}
{tex}\text { or } 3 q , 3 q + 1,3 q + 2{/tex}
{tex}\text { If } n = 3 q \text { then, numbers are } 3 q , ( 3 q + 1 ) , ( 3 q + 2 ){/tex}
{tex}3 q \text { is divisible by } 3{/tex}.
{tex}\text { If } n = 3 q + 1 \text { then, numbers are } ( 3 q + 1 ) , ( 3 q + 3 ) , ( 3 q + 4 ){/tex}
{tex}( 3 q + 3 ) \text { is divisible by } 3{/tex}.
{tex}\text { If } n = 3 q + 2 \text { then, numbers are } ( 3 q + 2 ) , ( 3 q + 4 ) , ( 3 q + 6 ){/tex}
{tex}( 3 q + 6 ) \text { is divisible by } 3{/tex}.
{tex}\therefore \text { out of } n , ( n + 2 ) \text { and } ( n + 4 ) \text { only one is divisible by } 3{/tex}.
0Thank You