Find the roots of equation 1\x+4-1/x-7=11/30

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Ayush Karagwal 5 years, 8 months ago
- 1 answers
Related Questions
Posted by Kanika . 1 month ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
{tex}\frac { 1 } { x + 4 } - \frac { 1 } { x - 7 } = \frac { 11 } { 30 }{/tex} where {tex}x \neq - 4,7{/tex}
{tex}\Rightarrow \frac { ( x - 7 ) - ( x + 4 ) } { ( x + 4 ) ( x - 7 ) } = \frac { 11 } { 30 }{/tex}
{tex}\Rightarrow \frac { - 11 } { ( x + 4 ) ( x - 7 ) } = \frac { 11 } { 30 }{/tex}
{tex}\Rightarrow{/tex} x2 - 7x + 4x - 28 = -30
{tex}\Rightarrow{/tex} x2 - 3x + 2= 0
Comparing equation x2 - 3x + 2 = 0 with general form ax2 + bx + c = 0,
We get a = 1, b = -3 and c = 2
Using quadratic formula {tex}x = {-b \pm \sqrt{b^2-4ac} \over 2a}{/tex}to solve equation,
{tex}x = \frac { 3 \pm \sqrt { ( - 3 ) ^ { 2 } - 4 ( 1 ) ( 2 ) } } { 2 \times 1 }{/tex}
{tex}\Rightarrow x = \frac { 3 \pm \sqrt { 1 } } { 2 }{/tex}
{tex}\Rightarrow x = \frac { 3 + \sqrt { 1 } } { 2 } , \frac { 3 - \sqrt { 1 } } { 2 }{/tex} {tex}\Rightarrow{/tex} x = 2, 1
0Thank You