(kx)2 + kx + 1 = …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Anurag Khobragade 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
We have,
{tex}kx^2 + kx + 1 = -4x^2 - x{/tex}
{tex}\Rightarrow{/tex} {tex}kx^2 + 4x^2 + kx + x + 1 = 0{/tex}
{tex}\Rightarrow{/tex}{tex} (k + 4)x^2 + (k + 1)x + 1 = 0{/tex}
Here, a = k + 4, b = k + 1 and c = 1
{tex}\therefore{/tex} {tex}D = b^2 - 4ac{/tex}
= (k + 1)2 - 4 {tex}\times{/tex} (k + 4) {tex}\times{/tex} (1)
{tex}= k^2 + 1 + 2k - 4k - 16{/tex}
{tex}= k^2 - 2k - 15{/tex}
{tex}\Rightarrow{/tex} {tex}D = k^2 - 2k - 15{/tex}
The given equation will have real and equal roots, if
D = 0
{tex}\Rightarrow{/tex} {tex}k^2 - 2k - 15 = 0{/tex}
{tex}\Rightarrow{/tex}{tex} k^2 - 5k + 3k - 15 = 0{/tex}
{tex}\Rightarrow{/tex} k(k - 5) + 3(k - 5) = 0
{tex}\Rightarrow{/tex} (k - 5)(k + 3) = 0
{tex}\Rightarrow{/tex} k - 5 = 0 or k + 3 = 0
{tex}\Rightarrow{/tex} k = 5 or k = -3
0Thank You