No products in the cart.

Two rails are represented by the …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Two rails are represented by the equations x+2y-4=0and 2x+4y-12=0.
  • 1 answers

Sia ? 6 years, 6 months ago

We have,
{tex}x + 2y - 4=0{/tex}

Putting {tex}y = 0{/tex}, we get
{tex}x + 0 - 4 = 0{/tex}

{tex} \Rightarrow {/tex} {tex}x = 4{/tex}
Putting x = 0, we get
{tex}0 + 2y - 4 = 0{/tex}

{tex} \Rightarrow {/tex} {tex}y = 2{/tex}
Thus, two solutions of equation {tex}x + 2y - 4 = 0{/tex} are:

x 4 0
y 0 2

We have, 
{tex}2x + 4y - 12 = 0{/tex}
Putting {tex}x = 0{/tex}, we get
{tex}0 + 4y - 12 = 0{/tex}

{tex} \Rightarrow {/tex} {tex}y = 3{/tex}
Putting {tex}y = 0{/tex}, we get
{tex}2x + 0(12) = 0{/tex}

{tex} \Rightarrow {/tex} x = 6
Thus, two solutions of equation {tex}2x + 4y - 12 = 0{/tex} are:

x 0 6
y 3 0

Now, we plot the points A (4, 0) and B (0, 2) and draw a line passing through these two points to get the graph of the line represented by the equations (i).
We also plot the points P (0, 3) and Q (6, 0) and draw a line passing through these two points to get the graph of the line represented by the equation (ii).
We observe that the lines are parallel and they do not intersect any where.

REMARK The graphical representation of the above pair of linear equations provides us a pair of parallel lines.
Let us write the pair of linear equations,
{tex}x + 2y - 4 = 0{/tex}
{tex}2x + 4y -12 = 0{/tex}
as {tex}a_1x + b_1y + c_1=0{/tex}
{tex}a_2x + b_2y +c_2 =0{/tex}
where {tex}a_1=1, b_1= 2, c_1 = -4{/tex},

{tex}a_2 = 2, b_2 = 4\ and \ c_2 = -12{/tex}
{tex}\frac { a _ { 1 } } { a _ { 2 } } = \frac { 1 } { 2 } , \frac { b _ { 1 } } { b _ { 2 } } = \frac { 2 } { 4 } = \frac { 1 } { 2 } \text { and } \frac { c _ { 1 } } { c _ { 2 } } = \frac { - 4 } { - 12 } = \frac { 1 } { 3 }{/tex}
{tex}\therefore \quad \frac { a _ { 1 } } { a _ { 2 } } = \frac { b _ { 1 } } { b _ { 2 } } \neq \frac { c _ { 1 } } { c _ { 2 } }{/tex}
will represent parallel lines, if
{tex}\frac { a _ { 1 } } { a _ { 2 } } = \frac { b _ { 1 } } { b _ { 2 } } \neq \frac { c _ { 1 } } { c _ { 2 } }{/tex}
The converse is also true for any pair of linear equations.
It follows from the above examples that the pair of linear equations
{tex}a_1x + b_1y + c_1 = 0{/tex}
{tex}a_2x + b_2y +c_2=0{/tex}
will represent:

  1. intersecting lines, if {tex}\frac { a _ { 1 } } { a _ { 2 } } \neq \frac { b _ { 1 } } { b _ { 2 } }{/tex}
  2. coincident lines, if {tex}\frac { a _ { 1 } } { a _ { 2 } } = \frac { b _ { 1 } } { b _ { 2 } } = \frac { c _ { 1 } } { c _ { 2 } }{/tex}
  3. parallel lines, if {tex}\frac { a _ { 1 } } { a _ { 2 } } = \frac { b _ { 1 } } { b _ { 2 } } \neq \frac { c _ { 1 } } { c _ { 2 } }{/tex}
https://examin8.com Test

Related Questions

Venu Gopal has twice
  • 0 answers
Prove that root 8 is an irration number
  • 2 answers
(A + B )²
  • 1 answers
X-y=5
  • 1 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App