No products in the cart.

If 77th term of Ap=1/9 and9th=1/7 …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

If 77th term of Ap=1/9 and9th=1/7 find 63th term
  • 1 answers

Sia ? 6 years, 6 months ago

Let a be the first term and d be the common difference of the given AP. Then,
{tex}T _ { 7 } = \frac { 1 } { 9 } \Rightarrow a + 6 d = \frac { 1 } { 9 }{/tex} ...(i)
{tex}T _ { 9 } = \frac { 1 } { 7 } \Rightarrow a + 8 d = \frac { 1 } { 7 }{/tex} ...(i)
On subtracting (i) from (ii), we get
{tex}2 d = \left( \frac { 1 } { 7 } - \frac { 1 } { 9 } \right) = \frac { 2 } { 63 } \Rightarrow d = \left( \frac { 1 } { 2 } \times \frac { 2 } { 63 } \right) = \frac { 1 } { 63 }.{/tex}
Putting d = {tex}\frac { 1 } { 63 }{/tex}in (i), we get
{tex}a + \left( 6 \times \frac { 1 } { 63 } \right) = \frac { 1 } { 9 } \Rightarrow a + \frac { 2 } { 21 } = \frac { 1 } { 9 } \Rightarrow a = \left( \frac { 1 } { 9 } - \frac { 2 } { 21 } \right) = \left( \frac { 7 - 6 } { 63 } \right) = \frac { 1 } { 63 }.{/tex}
Thus, a = {tex}\frac { 1 } { 63 }{/tex} and d = {tex}\frac { 1 } { 63 }.{/tex}
{tex}\therefore{/tex} T63 = a + (63-1)d = (a + 62d)
{tex}= \left( \frac { 1 } { 63 } + 62 \times \frac { 1 } { 63 } \right) = \left( \frac { 1 } { 63 } + \frac { 62 } { 63 } \right) = 1.{/tex}
Hence, 63rd term of the given AP is 1.

https://examin8.com Test

Related Questions

Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
X-y=5
  • 1 answers
Venu Gopal has twice
  • 0 answers
(A + B )²
  • 1 answers
Prove that root 8 is an irration number
  • 2 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App