If 77th term of Ap=1/9 and9th=1/7 …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Vikash Kumar 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Let a be the first term and d be the common difference of the given AP. Then,
{tex}T _ { 7 } = \frac { 1 } { 9 } \Rightarrow a + 6 d = \frac { 1 } { 9 }{/tex} ...(i)
{tex}T _ { 9 } = \frac { 1 } { 7 } \Rightarrow a + 8 d = \frac { 1 } { 7 }{/tex} ...(i)
On subtracting (i) from (ii), we get
{tex}2 d = \left( \frac { 1 } { 7 } - \frac { 1 } { 9 } \right) = \frac { 2 } { 63 } \Rightarrow d = \left( \frac { 1 } { 2 } \times \frac { 2 } { 63 } \right) = \frac { 1 } { 63 }.{/tex}
Putting d = {tex}\frac { 1 } { 63 }{/tex}in (i), we get
{tex}a + \left( 6 \times \frac { 1 } { 63 } \right) = \frac { 1 } { 9 } \Rightarrow a + \frac { 2 } { 21 } = \frac { 1 } { 9 } \Rightarrow a = \left( \frac { 1 } { 9 } - \frac { 2 } { 21 } \right) = \left( \frac { 7 - 6 } { 63 } \right) = \frac { 1 } { 63 }.{/tex}
Thus, a = {tex}\frac { 1 } { 63 }{/tex} and d = {tex}\frac { 1 } { 63 }.{/tex}
{tex}\therefore{/tex} T63 = a + (63-1)d = (a + 62d)
{tex}= \left( \frac { 1 } { 63 } + 62 \times \frac { 1 } { 63 } \right) = \left( \frac { 1 } { 63 } + \frac { 62 } { 63 } \right) = 1.{/tex}
Hence, 63rd term of the given AP is 1.
0Thank You