If sum of square of zeroes …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Aman Singhal 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Let {tex}\alpha,\beta{/tex} be the zeros of the polynomial {tex}f(x)=x^2-8x+k{/tex}.
Sum of zeroes = {tex} \alpha + \beta = - \left( \frac { - 8 } { 1 } \right) = 8{/tex} and, Product of zeroes = {tex} \alpha \beta = \frac { k } { 1 } = k{/tex}
Now,
{tex} \alpha ^ { 2 } + \beta ^ { 2 } = 40{/tex}
{tex} \Rightarrow \alpha ^ { 2 } + \beta ^ { 2 }+2 \alpha\beta-2 \alpha\beta= 40{/tex}
{tex} \Rightarrow \quad ( \alpha + \beta ) ^ { 2 } - 2 \alpha \beta = 40{/tex}
{tex} \Rightarrow \quad 8 ^ { 2 } - 2 k = 40{/tex}
{tex} \Rightarrow \quad 2 k = 64 - 40 {/tex}
{tex}\Rightarrow 2 k = 24 {/tex}
{tex}\Rightarrow k = 12{/tex}
0Thank You