If α and β are the …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Since,
Sum of the zeroes of polynomial = α + β {tex}= \frac{{ - b}}{a}{/tex}
and product of zeroes of polynomial = αβ {tex}= \frac{c}{a}{/tex}
Simplify the given expression and substitutie the values, we obtain
{tex}\frac{\beta }{{a\alpha + b}} + \frac{\alpha }{{a\beta + b}}{/tex}{tex}= \frac{{\beta \left( {a\beta + b} \right) + \alpha \left( {a\alpha + b} \right)}}{{\left( {a\alpha + b} \right)\left( {a\beta + b} \right)}}{/tex}
{tex}= \frac{{\alpha {\beta ^2} + b\beta + \alpha^2 {a} + b\alpha }}{{{a^2}\alpha \beta + ab\alpha + ab\beta + {b^2}}}{/tex}
{tex} = \frac{{a{\alpha ^2} + b{\beta ^2} + b\alpha + b\beta }}{{{a^2} \times \frac{c}{a} + ab\left( {\alpha + \beta } \right) + {b^2}}}{/tex}
{tex}=\frac{{a\left[ {{{\left( {\alpha + \beta } \right)}^2} + b\left( {\alpha + \beta } \right)} \right]}}{{ac}}{/tex}
{tex} = \frac{{a\left[ {{{\left( {a + \beta } \right)}^2} - 2\alpha \beta } \right] - \frac{{{b^2}}}{a}}}{{ac}}{/tex}
{tex}= \frac{{a\left[ {\frac{{{b^2}}}{a} - \frac{{2c}}{a}} \right] - \frac{{{b^2}}}{a}}}{{ac}}{/tex}
{tex} = \frac{{a\left[ {\frac{{{b^2} - ac}}{a}} \right] - \frac{{{b^2}}}{a}}}{{ac}}{/tex}
{tex}= \frac{{a\left[ {\frac{{{b^2} - ac - {b^2}}}{a}} \right]}}{{ac}}{/tex}
{tex}= \frac{{{b^2} - 2c - {b^2}}}{{ac}}{/tex}
{tex}= \frac{{ - 2c}}{{ac}} = \frac{{ - 2}}{a}{/tex}
0Thank You