If sin theta =a^2-b^2/a^2+b^2,find the value …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Rajiv Ranjan 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Let us draw a right triangle ABC in which {tex}\angle B A C = \theta{/tex}

{tex}\sin \theta = \frac { a ^ { 2 } - b ^ { 2 } } { a ^ { 2 } + b ^ { 2 } }{/tex} ...... Given
{tex}\Rightarrow \frac { B C } { A C } = \frac { a ^ { 2 } - b ^ { 2 } } { a ^ { 2 } + b ^ { 2 } } \Rightarrow \frac { B C } { a ^ { 2 } - b ^ { 2 } } = \frac { A C } { a ^ { 2 } + b ^ { 2 } } = k ( \text { say } ){/tex}
where k is a positive number.
{tex}\Rightarrow B C = k \left( a ^ { 2 } - b ^ { 2 } \right){/tex}
{tex}A C = k \left( a ^ { 2 } + b ^ { 2 } \right){/tex}
In {tex}\Delta A B C{/tex}
{tex}\because \angle B = 90 ^ { \circ }{/tex}
{tex}\therefore A C ^ { 2 } = A B ^ { 2 } + B C ^ { 2 } \ldots \ldots{/tex} By Pythagoras theorem
{tex}\Rightarrow \mathrm { k } ^ { 2 } \left( \mathrm { a } ^ { 2 } + \mathrm { b } ^ { 2 } \right) ^ { 2 } = \mathrm { AB } ^ { 2 } + \mathrm { k } ^ { 2 } \left( \mathrm { a } ^ { 2 } - \mathrm { b } ^ { 2 } \right) ^ { 2 }{/tex}
{tex}\Rightarrow A B ^ { 2 } = k ^ { 2 } \left\{ \left( a ^ { 2 } + b ^ { 2 } \right) ^ { 2 } - \left( a ^ { 2 } - b ^ { 2 } \right) ^ { 2 } \right\}{/tex}
{tex}\Rightarrow A B ^ { 2 } = k ^ { 2 } \left( 4 a ^ { 2 } b ^ { 2 } \right) \Rightarrow A B = 2 a b k{/tex}
Therefore,
{tex}\cos \theta = \frac { A B } { A C } = \frac { 2 a b k } { k \left( a ^ { 2 } + b ^ { 2 } \right) } = \frac { 2 a b } { a ^ { 2 } + b ^ { 2 } }{/tex}
{tex}\tan \theta = \frac { B C } { A B } = \frac { k \left( a ^ { 2 } - b ^ { 2 } \right) } { 2 a b k } = \frac { a ^ { 2 } - b ^ { 2 } } { 2 a b }{/tex}
{tex}cosec \theta = \frac { A C } { B C } = \frac { k \left( a ^ { 2 } + b ^ { 2 } \right) } { k \left( a ^ { 2 } - b ^ { 2 } \right) } = \frac { a ^ { 2 } + b ^ { 2 } } { a ^ { 2 } - b ^ { 2 } }{/tex}
{tex}\sec \theta = \frac { A C } { A B } = \frac { k \left( a ^ { 2 } + b ^ { 2 } \right) } { 2 a b k } = \frac { a ^ { 2 } + b ^ { 2 } } { 2 a b }{/tex}
{tex}\cot \theta = \frac { A B } { B C } = \frac { 2 a b k } { k \left( a ^ { 2 } - b ^ { 2 } \right) } = \frac { 2 a b } { a ^ { 2 } - b ^ { 2 } }{/tex}
0Thank You