No products in the cart.

(a-b)x+(a+b)y=2a2-2b2 (a+b)(x+y)=4ab Solve this by cross …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

(a-b)x+(a+b)y=2a2-2b2 (a+b)(x+y)=4ab Solve this by cross multiplication
  • 2 answers

Sia ? 6 years, 6 months ago

The given system of equations are:
(a - b)x + (a + b)y = 2a2 - 2b2
So, (a - b)x + (a + b)y - 2a2 - 2b2 = 0
 (a - b)x + (a + b)y - 2(a2 - b2) = 0 ........(i)
And (a + b)(x + y) = 4ab
So, (a +b)x + (a + b)y - 4ab = 0 ..........(ii)
The given system of equation is in the form of
a1x + b1y - c1 = 0
and a2x + b2y - c2 = 0
Compare (i) and (ii) , we get
a1 = a - b, b1 = a + b, c1 = -2(a2 + b2)
a2 = a + b, b2 = a + b, c2 = -4ab
By cross-multiplication method
{tex}\frac{x}{{2(a + b)({a^2} - {b^2} + 2ab)}}{/tex} {tex} = \frac{{ - y}}{{2(a - b)({a^2} + {b^2})}}{/tex} {tex} = \frac{1}{{ - 2b(a + b)}}{/tex}
Now, {tex}\frac{x}{{2(a + b)({a^2} - {b^2} + 2ab)}} = \frac{1}{{ - 2b(a + b)}}{/tex} {tex}{/tex}

{tex}⇒ x = \frac{{2ab - {a^2} + {b^2}}}{b}{/tex}
And, {tex}\frac{{ - y}}{{2(a - b)({a^2} + {b^2})}} = \frac{1}{{ - 2b(a + b)}} {/tex} 
{tex}⇒ y = \frac{{(a - b)({a^2} - {b^2})}}{{b(a + b)}}{/tex}
The solution of the system of equations are {tex}\frac{{2ab - {a^2} + {b^2}}}{b}{/tex} and {tex}\frac{{(a - b)({a^2} - {b^2})}}{{b(a + b)}}{/tex} respectively.

Bhubneswar Samal 4 years, 6 months ago

thanks
https://examin8.com Test

Related Questions

Prove that root 8 is an irration number
  • 2 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
(A + B )²
  • 1 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
X-y=5
  • 1 answers
Venu Gopal has twice
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App