For what value of k will …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Srishti Pandey 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Given linear equation is
(3k + 1)x + 3 y - 2 = 0 .......... (i)
(k2 + 1)x + (k - 2)y - 5 = 0 ............ (ii)
Compare with a1x + b1y + c = 0 and a2x + b2y and c2 = 0
a1 = 3k + 1 , b1 = 3 , c1 = -2
and a2 = k2+ 1 , b2 = k - 2, c2 = -5
The given system of equations will have no solution, if
{tex} \frac { a_1 } { a_2 } = \frac { b_1 } { b_2} \neq \frac { c_1 } { c_2 }{/tex}
{tex} \frac { 3 k + 1 } { k ^ { 2 } + 1 } = \frac { 3 } { k - 2 } \neq \frac { - 2 } { - 5 }{/tex}
{tex}\Rightarrow \quad \frac { 3 k + 1 } { k ^ { 2 } + 1 } = \frac { 3 } { k - 2 } \text { and } \frac { 3 } { k - 2 } \neq \frac { 2 } { 5 }{/tex}
Now, {tex}\frac { 3 k + 1 } { k ^ { 2 } + 1 } = \frac { 3 } { k - 2 }{/tex}
{tex}\Rightarrow{/tex} (3k + 1)(k - 2)=3(k2 + 1)
{tex}\Rightarrow{/tex} 3k2 - 5k - 2 =3k2 + 3
{tex}\Rightarrow{/tex} -5k - 2 =3
{tex}\Rightarrow{/tex} -5k = 5
{tex}\Rightarrow{/tex} k = -1
Clearly, {tex}\frac { 3 } { k - 2 } \neq \frac { 2 } { 5 }{/tex} for k = -1.
Hence, the given system of equations will have no solution for k = -1.
0Thank You