No products in the cart.

if a and b are positive …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

if a and b are positive integers root to always lies between a/b and a-2b/a+b
  • 1 answers

Sia ? 6 years, 6 months ago

We do not know whether {tex} \frac { a } { b } < \frac { a + 2 b } { a + b } \text { or, } \frac { a } { b } > \frac { a + 2 b } { a + b }{/tex}.
Therefore, to compare these two numbers, let us compute {tex} \frac { a } { b } - \frac { a + 2 b } { a + b }{/tex}
We have,
{tex} \frac { a } { b } - \frac { a + 2 b } { a + b } = \frac { a ( a + b ) - b ( a + 2 b ) } { b ( a + b ) }{/tex} {tex} = \frac { a ^ { 2 } + a b - a b - 2 b ^ { 2 } } { b ( a + b ) } = \frac { a ^ { 2 } - 2 b ^ { 2 } } { b ( a + b ) }{/tex}
{tex} \therefore \quad \frac { a } { b } - \frac { a + 2 b } { a + b } > 0{/tex}
{tex} \Rightarrow \quad \frac { a ^ { 2 } - 2 b ^ { 2 } } { b ( a + b ) } > 0{/tex}
{tex} \Rightarrow{/tex}    a2 - 2b2 > 0
{tex} \Rightarrow{/tex} a2> 2b2
{tex} \Rightarrow \quad a > \sqrt { 2 } b{/tex}
and, {tex} \frac { a } { b } - \frac { a + 2 b } { a + b } < 0{/tex}
{tex} \Rightarrow \quad \frac { a ^ { 2 } - 2 b ^ { 2 } } { b ( a + b ) } < 0{/tex}   
{tex} \Rightarrow{/tex} a2 - 2b2 < 0
{tex} \Rightarrow{/tex}a2 <2b2
{tex} \Rightarrow \quad a < \sqrt { 2 } b{/tex}
Thus, {tex} \frac { a } { b } > \frac { a + 2 b } { a + b }{/tex}, if {tex}a > \sqrt { 2 b }{/tex} and {tex} \frac { a } { b } < \frac { a + 2 b } { a + b }{/tex}, if {tex} a < \sqrt { 2 } b{/tex}.
So, we have the following cases:
CASE I When {tex} a > \sqrt { 2 } b{/tex}
In this case, we have
{tex} \frac { a } { b } > \frac { a + 2 b } { a + b } \text { i.e., } \frac { a + 2 b } { a + b } < \frac { a } { b }{/tex}
We have to prove that
{tex} \frac { a + 2 b } { a + b } < \sqrt { 2 } < \frac { a } { b }{/tex}
We have,
{tex} a > \sqrt { 2 } b{/tex}
{tex} \Rightarrow{/tex} a2> 2b[Adding a2 on both sides]
{tex} \Rightarrow \quad 2 a ^ { 2 } + 2 b ^ { 2 } > \left( a ^ { 2 } + 2 b ^ { 2 } \right) + 2 b ^ { 2 }{/tex} [Adding 2b2 on both sides]
{tex} \Rightarrow \quad 2 \left( a ^ { 2 } + b ^ { 2 } \right) + 4 a b > a ^ { 2 } + 4 b ^ { 2 } + 4 a b{/tex} [Adding 4ab on both sides]
{tex} \Rightarrow \quad 2 \left( a ^ { 2 } + 2 a b + b ^ { 2 } \right) > a ^ { 2 } + 4 a b + 4 b ^ { 2 }{/tex}
{tex} \Rightarrow \quad 2 ( a + b ) ^ { 2 } > ( a + 2 b ) ^ { 2 }{/tex}
{tex} \Rightarrow \quad \sqrt { 2 } ( a + b ) > a + 2 b{/tex}
{tex} \Rightarrow \quad \sqrt { 2 } > \frac { a + 2 b } { a + b }{/tex}  ........(i)
Again,
{tex} a > \sqrt { 2 } b {/tex}
{tex}\Rightarrow \frac { a } { b } > \sqrt { 2 }{/tex}  .......(ii)
From (i) and (ii), we get
{tex} \frac { a + 2 b } { a + b } < \sqrt { 2 } < \frac { a } { b }{/tex}
CASE II When {tex} a < \sqrt { 2 } b{/tex}
In this case, we have
{tex} \frac { a } { b } < \frac { a + 2 b } { a + b }{/tex}
We have to show that {tex} \frac { a } { b } < \sqrt { 2 } < \frac { a + 2 b } { a + b }{/tex}
We have,
{tex} a < \sqrt { 2 } b{/tex}
{tex} \Rightarrow \quad a ^ { 2 } < 2 b ^ { 2 }{/tex}
{tex} \Rightarrow \quad a ^ { 2 } + a ^ { 2 } < a ^ { 2 } + 2 b ^ { 2 }{/tex} [Adding a2 on both sides]
{tex} \Rightarrow \quad 2 a ^ { 2 } + 2 b ^ { 2 } < a ^ { 2 } + 2 b ^ { 2 }+ 2 b ^ { 2 }{/tex} [Adding 2b2 on both sides]
{tex}\Rightarrow \quad 2 a ^ { 2 } + 2 b ^ { 2 } < a ^ { 2 } + 4 b ^ { 2 }{/tex}
{tex} \Rightarrow \quad 2 a ^ { 2 } + 4 a b + 2 b ^ { 2 } < a ^ { 2 } + 4 a b + 4 b ^ { 2 }{/tex} [Adding 4ab on both sides]
{tex} \Rightarrow \quad 2 ( a + b ) ^ { 2 } < ( a + 2 b ) ^ { 2 }{/tex}
{tex} \Rightarrow \sqrt { 2 } ( a + b ) < a + 2 b{/tex}
{tex} \Rightarrow \quad \sqrt { 2 } < \frac { a + 2 b } { a + b }{/tex} . ...(iii)
{tex} \Rightarrow \quad a < \sqrt { 2 } b \Rightarrow \frac { a } { b } < \sqrt { 2 }{/tex}  ....(iv)
From (iii) and (iv), we get
{tex} \frac { a } { b } < \sqrt { 2 } < \frac { a + 2 b } { a + b }{/tex}
Hence, {tex} \sqrt { 2 }{/tex} lies between {tex} \frac { a } { b }{/tex} and {tex} \frac { a + 2 b } { a + b }{/tex}.

https://examin8.com Test

Related Questions

Prove that root 8 is an irration number
  • 2 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Venu Gopal has twice
  • 0 answers
(A + B )²
  • 1 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
X-y=5
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App