Find the values of alpha and …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Given 2x + 3y = 7 and 2ax + {tex}( \alpha + \beta ){/tex}y = 28.
We know that the condition for a pair of linear equations to be consistent and having infinite number of solutions is
{tex}\frac { a _ { 1 } } { a _ { 2 } } = \frac { b _ { 1 } } { b _ { 2 } } = \frac { c _ { 1 } } { c _ { 2 } }{/tex}
{tex}\frac { 2 } { 2 a } = \frac { 3 } { a + \beta } = \frac { 7 } { 28 }{/tex}
{tex}\frac { 2 } { 2 \alpha } = \frac { 7 } { 28 }{/tex}
{tex}= 2 \alpha \times 7 = 28 \times 2{/tex}
{tex}\alpha = 4{/tex}
{tex}\frac { 3 } { \alpha + \beta } = \frac { 7 } { 28 }{/tex}
{tex}= 7 ( \alpha + \beta ) = 28 \times 3{/tex}
or, {tex}a + \beta = 12{/tex}
or, {tex}\beta = 12 - \alpha{/tex}
or, {tex}\beta = 12 - 4{/tex}
or, {tex}\beta = 8{/tex}
0Thank You