Solve for x:-12abx2 -(9a2 - 8b2)x …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Rahul Kumar 6 years, 4 months ago
- 1 answers
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
12 abx2 - (9a2 - 8b2)x - 6ab = 0
Comparing with Ax2 + Bx + C = 0, we get
A = 12 ab, B = -(9a2 - 8b2), C = -6 ab
Using the quadratic formula, {tex}\mathrm { x } = \frac { - \mathrm { B } \pm \sqrt { \mathrm { B } ^ { 2 } - 4 \mathrm { AC } } } { 2 \mathrm { A } }{/tex}
we get {tex}\Rightarrow x = - \left( - \left( 9 a ^ { 2 } - 8 b ^ { 2 } \right) \right\}{/tex}
{tex}\frac { \pm \sqrt { \left( - \left( 9 a ^ { 2 } - 8 b ^ { 2 } \right) \right) ^ { 2 } - 4 ( 12 a b ) ( - 6 a b ) } } { 2 ( 12 a b ) }{/tex}
{tex}= \frac { 9 a ^ { 2 } - 8 b ^ { 2 } \pm \sqrt { 81 a ^ { 4 } + 64 b ^ { 4 } - 144 a ^ { 2 } b ^ { 2 } + 288 a ^ { 2 } b ^ { 2 } } } { 24 a h }{/tex}
{tex}= \frac { 9 a ^ { 2 } - 8 b ^ { 2 } \pm \sqrt { \left( 9 a ^ { 2 } + 8 b ^ { 2 } \right) ^ { 2 } } } { 24 a b }{/tex}
{tex}= \frac { 9 a ^ { 2 } - 8 b ^ { 2 } \pm \left( 9 a ^ { 2 } + 8 b ^ { 2 } \right) } { 24 a b }{/tex}
{tex}= \frac { 9 a ^ { 2 } - 8 b ^ { 2 } + 9 a ^ { 2 } + 8 b ^ { 2 } } { 24 a b }{/tex}
{tex}= \frac { 9 a ^ { 2 } - 8 b ^ { 2 } - 9 a ^ { 2 } - 8 b ^ { 2 } } { 24 a b }{/tex}
{tex}= \frac { 18 a ^ { 2 } } { 24 a b } , \frac { - 16 b ^ { 2 } } { 24 a b } = \frac { 3 a } { 4 b } , \frac { - 2 b } { 3 a }{/tex}
{tex}\therefore{/tex} the solution of the given equation are {tex}\frac { 3 a } { 4 b } \text { and } \frac { - 2 b } { 3 a }{/tex}.
0Thank You