No products in the cart.

2(ax-by)+a+4b=0 2(bx+ay)+b-4a=0 Find the solution of …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

2(ax-by)+a+4b=0 2(bx+ay)+b-4a=0 Find the solution of given system of equation by cross multiplication method
  • 1 answers

Sia ? 6 years, 6 months ago

The given system of equation may be written as
2(ax - by) + a + 4b = 0
So, 2ax - 2by + a + 4b ..............(i)
2(bx + ay) + b - 4a = 0
so, 2bx+2ay+b-4a=0................(ii)
compare (i) and (ii) with standard form, we get
a1 = 2a, b1 = -2b, c1 = a + 4b
a2 = 2b, b2 = 2a, c2 = b - 4a
By cross multiplication method
{tex} \frac{x}{{ - 2{b^2} + 8ab - 2{a^2} - 8ab}}{/tex} {tex}= \frac{{ - y}}{{2ab - 8{a^2} - 2ab - 8{b^2}}}{/tex} {tex} = \frac{1}{{4{a^2} + 4{b^2}}}{/tex}
{tex} \frac{x}{{ - 2{b^2} - 2{a^2}}} = \frac{{ - y}}{{ - 8{a^2} - 8{b^2}}} = \frac{1}{{4{a^2} + 4{b^2}}}{/tex}
Now, {tex}\frac{x}{{ - 2{b^2} - 2{a^2}}} = \frac{1}{{4{a^2} + 4{b^2}}} {/tex}
{tex}⇒ x = \frac{{ - 1}}{2}{/tex}
And, {tex}\frac{{ - y}}{{ - 8{a^2} - 8{b^2}}} = \frac{1}{{4{a^2} + 4{b^2}}} {/tex}
{tex}⇒ y = 2{/tex}
Therefore, the solution of the given pair of equations are {tex}\frac{{ - 1}}{2}{/tex} and 2 respectively.

https://examin8.com Test

Related Questions

Venu Gopal has twice
  • 0 answers
Prove that root 8 is an irration number
  • 2 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
X-y=5
  • 1 answers
(A + B )²
  • 1 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App