Find the area of quadrilateral ABCD …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Nikki Gour 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Area of quadrilateral ABCD = ar {tex}\triangle{/tex}ABD + ar {tex}\triangle{/tex}BCD
ar {tex}\triangle{/tex}ABD = {tex}\frac 12{/tex}[ 1(- 3 - 21) + 7(21 - 1) + 7(1 + 3)]
= {tex} \frac { 1 } { 2 } [ - 24 + 7 \times 20 + 7 \times 4 ]{/tex}
{tex}= \frac { 1 } { 2 } {/tex}[-24 + 140 + 28]
{tex}= \frac { 1 } { 2 } \times 144{/tex} = 72 sq. units
ar {tex}\triangle{/tex}BCD
= {tex}\frac { 1 } { 2 }{/tex}[7(2 - 21) + 12(21 + 3) + 7(-3 - 2)]
= {tex}\frac { 1 } { 2 } [ 7 \times - 19 + 12 \times 24 + 7 \times - 5 ]{/tex}
= {tex}\frac12{/tex}[-133 + 288 - 35]
= {tex}\frac 12{/tex}[288 - 168]
{tex}= \frac { 1 } { 2 } \times 120{/tex}
= 60 sq. units
Hence, Area Quadrilateral ABCD = 72 + 60 = 132 sq units
0Thank You