IN AN Equilateral triangle ABC, a …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
Let ABC be an equilateral triangle and let D be a point on BC such that {tex} B D = \frac { 1 } { 3 } B C.{/tex} Draw {tex} A E \perp B C.{/tex} Join AD.

In {tex}\Delta{/tex}AEB, and {tex}\Delta{/tex}AEC, we have AB = AC,
{tex}\angle{/tex}AEB = {tex}\angle{/tex}AEC = 90°
and, AE = AE
So, by RHS-criterion of similarity, we have
{tex}\Delta{/tex}AEB ~ {tex}\Delta{/tex}AEC
{tex}\Rightarrow{/tex} BE = EC
Thus, we have
{tex}B D = \frac { 1 } { 3 } B C , D C = \frac { 2 } { 3 } B C{/tex} and {tex}B E = E C = \frac { 1 } { 2 } B C{/tex} ...(1)
Since {tex}\angle{/tex} C = 60°. Therefore, {tex}\Delta{/tex}ADC is an acute triangle.
{tex}\therefore \quad A D ^ { 2 } = A C ^ { 2 } + D C ^ { 2 } - 2 D C \times E C{/tex}
{tex}\Rightarrow \quad A D ^ { 2 } = A C ^ { 2 } + \left( \frac { 2 } { 3 } B C \right) ^ { 2 } - 2 \times \frac { 2 } { 3 } B C \times \frac { 1 } { 2 } B C{/tex} [Using(1)]
{tex}\Rightarrow \quad A D ^ { 2 } = A C ^ { 2 } + \frac { 4 } { 9 } B C ^ { 2 } - \frac { 2 } { 3 } B C ^ { 2 }{/tex}
{tex}\Rightarrow \quad A D ^ { 2 } = A B ^ { 2 } + \frac { 4 } { 9 } A B ^ { 2 } - \frac { 2 } { 3 } A B ^ { 2 }{/tex}[{tex}\because{/tex} AB = BC= AC]
{tex}\Rightarrow \quad A D ^ { 2 } = \frac { 9 A B ^ { 2 } + 4 A B ^ { 2 } - 6 A B ^ { 2 } } { 9 } = \frac { 7 } { 9 } A B ^ { 2 }{/tex}
{tex}\Rightarrow{/tex} 9 AD2 = 7AB2
ALITER: Draw {tex}A E \perp B C.{/tex} Triangle ABC is equilateral. Therefore, E is the mid-point of BC.
{tex}\therefore \quad B E = C E = \frac { 1 } { 2 } B C.{/tex}
Applying Pythagoras theorem in right triangles AEB and AED, we obtain
AB2 = AE2 + BE2 and AD2 = AE2 + DE2
{tex}\Rightarrow{/tex} AB2 - AD2 = (AE2 + BE2) - (AE2 + DE2)
{tex}\Rightarrow{/tex} AB2 - AD2 = BE2 - DE2
{tex}\Rightarrow \quad A B ^ { 2 } - A D ^ { 2 } = \left( \frac { 1 } { 2 } A B \right) ^ { 2 } - \left( \frac { 1 } { 6 } A B \right) ^ { 2 }{/tex} {tex}\left[ \because D E = B E - B D = \frac { 1 } { 2 } A B - \frac { 1 } { 3 } A B = \frac { 1 } { 6 } A B \right]{/tex}
{tex}\Rightarrow \quad A B ^ { 2 } - A D ^ { 2 } = \frac { 2 } { 9 } A B ^ { 2 } \Rightarrow \frac { 7 } { 9 } A B ^ { 2 } = A D ^ { 2 }{/tex}
{tex}\Rightarrow 9 A D ^ { 2 } = 7 A B ^ { 2 }{/tex}
0Thank You