If alpha and beeta are the …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Kanika . 1 month ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Since, α and β are the zeroes of the quadratic polynomial f(x) = 6x2 + x - 2.
a=6, b=1, c=-2
sum of zeros =α+β={tex}-\frac ba{/tex}{tex}= \frac{{ - 1}}{6}{/tex}
Product of the zeroes = αβ={tex}\frac ca{/tex} {tex} = \frac{{ - 1}}{3}{/tex}
Now,
{tex}\frac{\mathrm\alpha}{\mathrm\beta}+\frac{\mathrm\beta}{\mathrm\alpha}=\frac{\mathrm\alpha^2+\mathrm\beta^2}{\mathrm{αβ}}=\frac{(\mathrm\alpha+\mathrm\beta)^2-2\mathrm{αβ}}{\mathrm{αβ}}{/tex}
{tex}=\frac{\left(-{\displaystyle\frac16}\right)^2-2(-{\displaystyle\frac13})}{\displaystyle-\frac13}=\frac{\displaystyle\frac1{36}+\frac23}{\displaystyle-\frac13}=-\frac{\displaystyle\frac{75}{36}}{\displaystyle\frac13}=-\frac{75}{36}\times\frac31=-\frac{25}4{/tex}
0Thank You