No products in the cart.

If alpha and beta are the …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

If alpha and beta are the zeros of quadratic polynomial f of x is equal to x square - 2 X + Q prove that Alpha square by beta square + beta square by Alpha square is equal to b ^ 4 by 2 square minus 40 square by Q + 2
  • 1 answers

Sia ? 6 years, 6 months ago

Here α and β are the zeros of polynomial f(x) = x2 - px + q
So a=1,b=-p,c=q
Sum of the zeroes α + β={tex}-\frac ba{/tex} = p
Product of the zeroes  αβ=q
 {tex}\frac{{{\alpha ^2}}}{{{\beta ^2}}} + \frac{{{\beta ^2}}}{{{\alpha ^2}}}{/tex}
{tex}= \frac{{{\alpha ^4} + {\beta ^4}}}{{{\alpha ^2}{\beta ^2}}}{/tex}
{tex}=\frac{\left(\mathrm\alpha^2+\mathrm\beta^2\right)^2-2\left(\mathrm{αβ}\right)^2}{\left(\mathrm{αβ}\right)^2}=\frac{\{(\mathrm\alpha+\mathrm\beta)^2-2\mathrm{αβ}\}^2-2\left(\mathrm{αβ}\right)^2}{\left(\mathrm{αβ}\right)^2}{/tex}

{tex}=\frac{(\mathrm p^2-2\mathrm q)^2-2\mathrm q^2}{\mathrm q^2}=\frac{\mathrm p^4+4\mathrm q^2-4\mathrm p^2\mathrm q-2\mathrm q^2}{\mathrm q^2}=\frac{\mathrm p^4+2\mathrm q^2-4\mathrm p^2\mathrm q}{\mathrm q^2}{/tex}

{tex}=\frac{\mathrm p4}{\mathrm q^2}-\frac{4\mathrm p^2\mathrm q}{\mathrm q^2}+\frac{2\mathrm q^2}{\mathrm q^2}=\frac{\mathrm p4}{\mathrm q^2}-\frac{4\mathrm p^2}{\mathrm q}+2=\mathrm{RHS}{/tex}
Hence, proved.

https://examin8.com Test

Related Questions

Venu Gopal has twice
  • 0 answers
Prove that root 8 is an irration number
  • 2 answers
(A + B )²
  • 1 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
X-y=5
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App