Find the zeros of 3 x …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
We have,f(x) = 3x2 - x - 4
= 3x2 - 4x + 3x - 4
= x(3x - 4) + 1(3x - 4)
= (3x - 4) )(x + 1)
{tex}\therefore{/tex} f(x) = 0
{tex}\Rightarrow{/tex} (3x - 4)(x +1) = 0
{tex}\Rightarrow{/tex} 3x - 4 = 0 or x + 1 = 0
{tex}\Rightarrow x = \frac { 4 } { 3 }{/tex} or x = -1
So, the zeros of f(x) are {tex}\frac { 4 } { 3 } \text { and } - 1{/tex}
Now sum of zeros {tex}= \frac { 4 } { 3 } + ( - 1 ) = \frac { 1 } { 3 } = \frac { - ( \text { coefficient of } x ) } { \left( \text { coefficient of } x ^ { 2 } \right) }{/tex}.
And product of zeros {tex}= \frac { 4 } { 3 } \times ( - 1 ) = \frac { - 4 } { 3 } = \frac { \text { constant term } } { \left( \text { coefficient of } x ^ { 2 } \right) }{/tex}
0Thank You