Using the euclids division algorithm to …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Kanika . 1 month ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Thvija S 7 years, 7 months ago
Divide 225 by 135 we get 1 quotient and 90 as remainder so that
225= 135*1 + 90
Divide 135 by 90 we get 1 quotient and 45 as remainder so that
135= 90*1 + 45
Divide 90 by 45 we get 2 quotient and no remainder so we can write it as
90 = 2*45+ 0
As there are no remainder so deviser 45 is our HCF
(ii) 38220>196 we always divide greater number with smaller one.
Divide 38220 by 196 then we get quotient 195 and no remainder so we can write it as
38220 = 196 * 195 + 0
As there is no remainder so deviser 196 is our HCF
(iii) 867>255 we always divide greater number with smaller one.
divide 867 by 255 then we get quotient 3 and remainder is 102
so we can write it as
867 = 255 * 3 + 102
Divide 255 by 102 then we get quotient 2 and remainder is 51
So we can write it as
255 = 102 * 2 + 51
Divide 102 by 51 we get quotient 2 and no remainder
So we can write it as
102 = 51*2+ 0
As there is no remainder so deviser 51 is our answer
( Copied from- http://ncerthelp.blogspot.in/)
1Thank You