No products in the cart.

In a triangle ABC, Pand 1are …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

In a triangle ABC, Pand 1are points on sides AB and AC respectively, such that PQ parallel BC. If AP=2.4cm, AQ=2cm, QC=3cm and BC=6cm, find AB and PQ.
  • 1 answers

Sia ? 6 years, 4 months ago

We have,

According to the question,we are given that,
{tex}P Q \| B C{/tex}
Therefore, by thales theorem,
We have,
{tex}\frac { A P } { P B } = \frac { A Q } { Q C }{/tex}
{tex}\frac { 2.4 } { P B } = \frac { 2 } { 3 }{/tex}
{tex}\Rightarrow P B = \frac { 3 \times 2.4 } { 2 }{/tex}
{tex}= \frac { 3 \times 24 } { 20 }{/tex}
{tex}= \frac { 3 \times 6 } { 5 }{/tex}
{tex}= \frac { 18 } { 5 }{/tex}
{tex}\Rightarrow{/tex} PB = 3.6 cm
Now, AB = AP + PB
= 2.4 + 3.6
= 6 cm
In {tex}\triangle {/tex}APQ and  {tex}\triangle{/tex}ABC
{tex}\angle A = \angle A{/tex} [Common]
{tex}\angle A P Q = \angle A B C{/tex} [{tex}\because{/tex} PQ || BC {tex}\Rightarrow{/tex} Corresponding angles are equal]
{tex}\Rightarrow \triangle A P Q \sim \triangle A B C{/tex} [By AA criteria]
{tex}\Rightarrow \frac { A B } { A P } = \frac { B C } { P Q }{/tex} [Corresponding sides of similar triangles are proportional]
{tex}\Rightarrow \frac { 6 } { 2.4 } = \frac { 6 } { P Q }{/tex}
{tex}\Rightarrow P Q = \frac { 6 \times 2.4 } { 6 }{/tex}
{tex}\Rightarrow{/tex} PQ = 2.4 cm
Hence, AB = 6 cm and PQ = 2.4 cm

https://examin8.com Test

Related Questions

(A + B )²
  • 1 answers
X-y=5
  • 1 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
Prove that root 8 is an irration number
  • 2 answers
Venu Gopal has twice
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App