Q.If alpha beta gamma are zeroes …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Chiku Singh 6 years, 4 months ago
- 1 answers
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
{tex}\alpha , \beta \text { and } \gamma{/tex} are zeroes of the polynomial 6x3 + 3x2 - 5x + 1
in the given polynomial, 6x3 + 3x2 - 5x + 1
a=6, b=3, c=-5, d=1
Sum of the roots = {tex}- \frac {b}{a}{/tex}
{tex}\alpha + \beta + \gamma = - \frac { 3 } { 6 }{/tex}
{tex}\alpha + \beta + \gamma = - \frac { 1 } { 2 }{/tex}
sum of the Product of the roots = {tex}\frac {c}{a}{/tex}
{tex}\alpha \beta + \beta \gamma + \gamma \alpha = - \frac { 5 } { 6 }{/tex}
Product of the roots = {tex}- \frac{d}{a}{/tex}
{tex}\alpha \beta \gamma = - \frac { 1 } { 6 }{/tex}
{tex}\therefore \quad \frac { 1 } { \alpha } + \frac { 1 } { \beta } + \frac { 1 } { \gamma } = \frac { \alpha \beta + \beta \gamma + \gamma \alpha } { \alpha \beta \gamma }{/tex}
{tex}= \frac { - 5 / 6 } { - 1 / 6 } = \frac { - 5 } { 6 } \times \frac { 6 } { - 1 }{/tex}
Hence, {tex}\alpha ^ { - 1 } + \beta ^ { - 1 } + \gamma ^ { -1 } = 5{/tex}
0Thank You