No products in the cart.

Q.If alpha beta gamma are zeroes …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Q.If alpha beta gamma are zeroes of 6x³+3x²+5x+1 then find the value of 1/alpha+1/beta+1/gamma.
  • 1 answers

Sia ? 6 years, 4 months ago

{tex}\alpha , \beta \text { and } \gamma{/tex} are zeroes of the polynomial 6x3 + 3x2 - 5x + 1

in the given polynomial,  6x3 + 3x2 - 5x + 1

a=6,  b=3,  c=-5,  d=1

Sum of the roots = {tex}- \frac {b}{a}{/tex}
{tex}\alpha + \beta + \gamma = - \frac { 3 } { 6 }{/tex}
{tex}\alpha + \beta + \gamma = - \frac { 1 } { 2 }{/tex}

sum of the Product of the roots = {tex}\frac {c}{a}{/tex}
{tex}\alpha \beta + \beta \gamma + \gamma \alpha = - \frac { 5 } { 6 }{/tex}

Product of the roots = {tex}- \frac{d}{a}{/tex}

 {tex}\alpha \beta \gamma = - \frac { 1 } { 6 }{/tex}
{tex}\therefore \quad \frac { 1 } { \alpha } + \frac { 1 } { \beta } + \frac { 1 } { \gamma } = \frac { \alpha \beta + \beta \gamma + \gamma \alpha } { \alpha \beta \gamma }{/tex}
{tex}= \frac { - 5 / 6 } { - 1 / 6 } = \frac { - 5 } { 6 } \times \frac { 6 } { - 1 }{/tex}
Hence, {tex}\alpha ^ { - 1 } + \beta ^ { - 1 } + \gamma ^ { -1 } = 5{/tex}

https://examin8.com Test

Related Questions

Venu Gopal has twice
  • 0 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
(A + B )²
  • 1 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
X-y=5
  • 1 answers
Prove that root 8 is an irration number
  • 2 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App