If cot theta =3\4, show that[sectheta …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Mohit Yadav 6 years, 4 months ago
- 1 answers
Related Questions
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 1 week ago
- 1 answers
Posted by Kanika . 4 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 1 week ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
Let us draw a triangle ABC such that, {tex}\angle{/tex}B = 90°.

Let {tex}\angle{/tex}A = {tex}\theta{/tex}°.
We have, {tex}\cot \theta = \frac { 3 } { 4 }{/tex}
Then, {tex}\cot \theta = \frac { \text { Base } } { \text { Perpendiaular } } = \frac { A B } { B C } = \frac { 3 } { 4 }{/tex}
Let AB = 3 and BC = 4,
By Pythagoras' theorem, we know that
AC2 = AB2 + BC2
= 32 + 42 = 9 + 16 = 25
{tex}\Rightarrow \quad AC = 5{/tex}
Now,
{tex}\sec \theta = \frac { \text { Hypotenuse } } { \text { Base } } = \frac { A C } { A B } = \frac { 5 } { 3 }{/tex}
{tex}\text{cosec} \theta = \frac { \text { Hypotenuse } } { \text { Perpendicular } } = \frac { A C } { B C } = \frac { 5 } { 4 }{/tex}
L.H.S = {tex}\sqrt { \frac { \sec \theta - \text{cosec} \theta } { \sec \theta + \text{cosec} \theta } }{/tex}
{tex}= \sqrt { \frac { 5 / 3 - 5 / 4 } { 5 / 3 + 5 / 4 } }{/tex}
{tex}= \sqrt { \frac { \frac { 20 - 15 } { 12 } } { \frac { 20 + 15 } { 12 } } }{/tex}
{tex}= \sqrt { \frac { 5 } { 35 } }{/tex}
{tex}= \sqrt { \frac { 1 } { 7 } }{/tex}
{tex}= \frac { 1 } { \sqrt { 7 } }{/tex}
= R.H.S
therefore, {tex}\sqrt { \frac { \sec \theta - \text{cosec} \theta } { \sec \theta + \text{cosec} \theta } }{/tex}{tex}= \frac { 1 } { \sqrt { 7 } }{/tex}
Hence proved.
0Thank You