In an given AP,a=7,d13=35,find d1and s13

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Monish C 6 years, 4 months ago
- 1 answers
Related Questions
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 0 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 1 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Kanika . 1 month, 1 week ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
Here, a = 7
a13 = 35
an = a + (n - 1)d
{tex} \Rightarrow {/tex} a13 = a + (13 - 1)d
{tex} \Rightarrow {/tex} a13 = a + 12d
{tex} \Rightarrow {/tex} 35 = 7 + 12d
{tex} \Rightarrow {/tex} 12d = 35 - 7
{tex} \Rightarrow {/tex} 12d = 28
{tex} \Rightarrow d = \frac{{28}}{{12}}{/tex}
{tex} \Rightarrow d = \frac{7}{3}{/tex}
Again, we know that
{tex}{S_n} = \frac{n}{2}\left[ {2a + (n - 1)d} \right]{/tex}
{tex} \Rightarrow {S_{13}} = \frac{{13}}{2}\left[ {2a + (13 - 1)d} \right]{/tex}
{tex} \Rightarrow {S_{13}} = \frac{{13}}{2}\left[ {2a + 12d} \right]{/tex}
{tex}={S_{13}} = \frac{{13}}{2}\left[ {2(7) + 12\left( {\frac{7}{3}} \right)} \right]{/tex}
{tex} \Rightarrow {S_{13}} = \frac{{13}}{2}(14 + 28){/tex}
{tex} \Rightarrow {S_{13}} = \frac{{13}}{2}(42){/tex}
{tex} \Rightarrow {S_{13}} = (13)(21){/tex}
{tex} \Rightarrow {S_{13}} = 273{/tex}
0Thank You