side AB and BC and median …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 1 answers
Posted by Kanika . 1 month, 1 week ago
- 1 answers
Posted by Hari Anand 6 months, 2 weeks ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
It is given that:
{tex}\frac { A B } { P Q } = \frac { B C } { Q R } = \frac { A D } { P M }{/tex}
{tex}\Rightarrow \quad \frac { A B } { P Q } = \frac { A D } { P M }{/tex}{tex}= \frac { B C } { Q R } = \frac { \frac { 1 } { 2 } B C } { \frac { 1 } { 2 } Q R } = \frac { B D } { Q M }{/tex} ....................................(i)
In {tex}\triangle ABD{/tex} and {tex}\triangle PQM{/tex}, we have
{tex}\frac { A B } { P Q } = \frac { A D } { P M } = \frac { B D } { Q M }{/tex} [from(i)]
{tex}\therefore \quad \triangle A B D \sim \triangle P Q M{/tex} [by SSS-similarity criteria].
And also, {tex}\angle B = \angle Q{/tex} [corresponding angles of similar triangles are equal].
Now, in {tex}\triangle ABC{/tex} and {tex}\triangle PQR{/tex}, we have
{tex}\angle B = \angle Q{/tex} [proved above]
and {tex}\frac { A B } { P Q } = \frac { B D } { Q M }{/tex} [from(i)].
{tex}\therefore \quad \triangle A B C \sim \triangle P Q R{/tex} [by SAS-similarity criteria].
0Thank You