If angle B and angleQ are …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Harjeet Kaur 6 years, 4 months ago
- 1 answers
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
Consider two right triangles ABC and PQR in which {tex} \angle B{/tex} and {tex}\angle Q{/tex} are the right angles.

We have,
In {tex}\triangle ABC{/tex}
{tex}\sin B=\frac{AC}{AB}{/tex}
and, In {tex}\triangle PQR{/tex}
{tex}\sin Q=\frac{PR}{PQ}{/tex}
{tex} \because \quad \sin B = \sin Q{/tex}
{tex} \Rightarrow \quad \frac { A C } { A B } = \frac { P R } { P Q }{/tex}
{tex} \Rightarrow \quad \frac { A C } { P R } = \frac { A B } { P Q } = k{/tex}(say) ...... (i)
{tex} \Rightarrow {/tex} AC = kPR and AB = kPQ .....(ii)
Using Pythagoras theorem in triangles ABC and PQR, we obtain
AB2 = AC2 + BC2 and PQ2 = PR2 + QR2
{tex} \Rightarrow \quad B C = \sqrt { A B ^ { 2 } - A C ^ { 2 } } \text { and } Q R = \sqrt { P Q ^ { 2 } - P R ^ { 2 } }{/tex}
{tex} \Rightarrow \quad \frac { B C } { Q R } = \frac { \sqrt { A B ^ { 2 } - A C ^ { 2 } } } { \sqrt { P Q ^ { 2 } - P R ^ { 2 } } } = \frac { \sqrt { k ^ { 2 } P Q ^ { 2 } - k ^ { 2 } P R ^ { 2 } } } { \sqrt { P Q ^ { 2 } - P R ^ { 2 } } }{/tex} [ using (ii) ]
{tex} \Rightarrow \quad \frac { B C } { Q R } = \frac { k \sqrt { P Q ^ { 2 } - P R ^ { 2 } } } { \sqrt { P Q ^ { 2 } - P R ^ { 2 } } } = k{/tex}...(iii)
From (i) and (iii), we get
{tex} \frac { A C } { P R } = \frac { A B } { P Q } = \frac { B C } { Q R }{/tex}
{tex} \Rightarrow \quad \Delta A C B - \Delta P R Q{/tex} [By S.A.S similarity]
{tex} \therefore \quad \angle B = \angle Q{/tex}
Hence proved.
0Thank You