No products in the cart.

find the quadratic polynomial ,the sum …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

find the quadratic polynomial ,the sum of the zero is 5\2and their product is 1.hence,find the zero of polynomial.
  • 1 answers

Sia ? 6 years, 5 months ago

Let the polynomial is f(x) and zeros are α and β

then f(x)=x2-(α+β)x+ αβ

Given {tex}\alpha + \beta = \frac { 5 } { 2 } , \alpha \beta = 1{/tex}
 {tex}x ^ { 2 } - ( \alpha + \beta ) x + \alpha \beta{/tex}

f(x)={tex}= x ^ { 2 } - \frac { 5 } { 2 } x + 1 = \frac { 1 } { 2 } \left( 2 x ^ { 2 } - 5x + 2 \right){/tex}
The polynomial whose zero are {tex}\alpha , \beta \text { is } 2 x ^ { 2 } - 5 x + 2{/tex}
Further, {tex}f ( x ) = \frac { 1 } { 2 } \left( 2 x ^ { 2 } - 5 x + 2 \right) = \frac { 1 } { 2 } \left( 2 x ^ { 2 } - 4 x - x + 2 \right){/tex}
{tex}= \frac { 1 } { 2 } [ 2 x ( x - 2 ) - ( x - 2 ) ]{/tex}
{tex}= \frac { 1 } { 2 } ( x - 2 ) ( 2 x - 1 ){/tex}
f(x) = 0 {tex}\Rightarrow \frac { 1 } { 2 } ( x - 2 ) ( 2 x - 1 ) = 0{/tex}
{tex}\therefore{/tex} for that x - 2 = 0 or 2x - 1 = 0
i.e., Either x = 2 or {tex}x = \frac { 1 } { 2 }{/tex}
{tex}\therefore{/tex} Zeros of polynomial are 2 and {tex} \frac { 1 } { 2 }{/tex}.

https://examin8.com Test

Related Questions

sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
X-y=5
  • 1 answers
Prove that root 8 is an irration number
  • 2 answers
Venu Gopal has twice
  • 0 answers
(A + B )²
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App