Verify that 1/2 1 - 2 …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Aaditya Satpute 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Kanika . 1 month ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
{tex}2 \mathrm { x } ^ { 3 } + \mathrm { x } ^ { 2 } - 5 \mathrm { x } + 2 ; \frac { 1 } { 2 } , 1 , - 2{/tex}
Comparing the given polynomial with
{tex}a x ^ { 3 } + b x ^ { 2 } + c x + d{/tex}, we get
a = 2, b = 1, c = 5, d = 2
Let {tex}p ( x ) = 2 x ^ { 3 } + x ^ { 2 } - 5 x + 2{/tex}
Then,
{tex}P \left( \frac { 1 } { 2 } \right) = 2 \left( \frac { 1 } { 2 } \right) ^ { 3 } + \left( \frac { 1 } { 2 } \right) ^ { 2 } - 5 \left( \frac { 1 } { 2 } \right) + 2{/tex}
{tex}= \frac { 1 } { 4 } + \frac { 1 } { 4 } - \frac { 5 } { 2 } + 2 = 0{/tex}
{tex}p ( 1 ) = 2 ( 1 ) ^ { 3 } + ( 1 ) ^ { 2 } - 5 ( 1 ) + 2{/tex}
= 2 + 1 - 5 + 2 = 0
{tex}p ( - 2 ) = 2 ( - 2 ) ^ { 3 } + ( - 2 ) ^ { 2 } - 5 ( - 2 ) + 2{/tex}
= -16 + 4 + 10 + 2 = 0
Therefore, {tex}\frac{1}{2}{/tex}, 1 and -2 are the zeroes of
{tex}2 x ^ { 3 } + x ^ { 2 } - 5 x + 2{/tex}
So, {tex}\alpha = \frac { 1 } { 2 } , \beta = 1 \text { and } \gamma = - 2{/tex}
Therefore,
{tex}\alpha + \beta + \gamma = \frac { 1 } { 2 } + 1 + ( - 2 ) = - \frac { 1 } { 2 } = - \frac { b } { a }{/tex}
{tex}\alpha \beta + \beta \gamma + \gamma \alpha = \left( \frac { 1 } { 2 } \right) \times ( 1 ) + ( 1 ) \times ( - 2 ) + ( - 2 ) \times \left( \frac { 1 } { 2 } \right){/tex}
{tex}= \frac { 1 } { 2 } - 2 - 1 = - \frac { 5 } { 2 } = \frac { c } { a }{/tex}
{tex}\alpha \beta \gamma = \left( \frac { 1 } { 2 } \right) \times ( 1 ) \times ( - 2 ) = - 1 = \frac { - 2 } { 2 } = \frac { - d } { a }{/tex}
0Thank You