A solid is in the shape …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Hari Anand 6 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month, 1 week ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 5 months ago
For Hemisphere,
Radius(r) = 1 cm
{tex}\therefore {/tex} Volume {tex}= \frac { 2 } { 3 } \pi r ^ { 3 }{/tex}
{tex}= \frac { 2 } { 3 } \pi ( 1 ) ^ { 3 }{/tex}
{tex}= \frac { 2 } { 3 } \pi \mathrm { cm } ^ { 3 }{/tex}
For cone,
Radius of the base(r) = 1 cm
Height (h) = 1 cm
{tex}\therefore {/tex} Volume{tex}= \frac { 1 } { 3 } \pi r ^ { 2 } h{/tex}
{tex}= \frac { 1 } { 3 } \pi ( 1 ) ^ { 2 } ( 1 ) = \frac { 1 } { 3 } \pi \operatorname { cm } ^ { 3 }{/tex}
Therefore, volume of the solid
=volume of the hemisphere + volume of cone
{tex}= \frac { 2 } { 3 } \pi + \frac { 1 } { 3 } \pi = \pi \mathrm { cm } ^ { 3 }{/tex}
0Thank You