AB and CD are two diameter …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Kanika . 1 month, 1 week ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 2 weeks ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Area of a circle with DO as diameter {tex}= \pi r ^ { 2 } {/tex} sq. cm
{tex}= \frac { 22 } { 7 } \times \frac { 7 } { 2 } \times \frac { 7 } { 2 }{/tex}
{tex} = \frac { 77 } { 2 }{/tex} cm2
Area of semi-circle with AB as diameter {tex}= \frac { \pi r ^ { 2 } } { 2 } {/tex}
{tex}= \frac { 22 \times 7 \times 7 } { 7 \times 2 } {/tex}
{tex}= 77 \mathrm { sq } . \mathrm { cm }{/tex}
Area of {tex}\triangle A B C = \frac { 1 } { 2 } \times 14 \times 7 = 49 \mathrm { sq.cm }{/tex}
Area of shaded region = Area of circle + Area of semi-circle - Area of {tex}\triangle{/tex}ABC
{tex}= \frac { 77 } { 2 } + 77 - 49 {/tex}
{tex}= 38.5 + 77 - 49 {/tex}
{tex}=115.5 - 49{/tex}
{tex}= 66.5 \mathrm { sq.cm }{/tex}.
0Thank You