No products in the cart.

Explain basic proportionality theorm

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Explain basic proportionality theorm
  • 1 answers

Sia ? 6 years, 6 months ago

Given : In {tex}\triangle A B C{/tex}, DE || BC and intersects AB in D and AC in E. 
Prove that : {tex}\frac{AD}{DB} = \frac{AE}{EC}{/tex}
Construction: Join BC, CD and draw EF {tex}\perp{/tex} BA and DG {tex}\perp{/tex} CA.  
Now from the given figure we have,
EF {tex}\perp{/tex} BA (Construction)
EF is the height of ∆ADE and ∆DBE    (Definition of perpendicular)
Area({tex}\triangle{/tex}ADE) ={tex}\frac{AD.EF}{2}{/tex}  .....(1)
Area({tex}\triangle{/tex}DBE) = {tex}\frac{DB.EF}{2}{/tex}   ....(2)
Divide the two equations we have
{tex}\frac{Area \triangle ADE}{Area \triangle DBE} = \frac{AD}{DB}{/tex}   .....(3)
{tex}\frac{Area \triangle ADE}{Area \triangle DEC} = \frac{AE}{EC}{/tex}   .....(4)
Therefore, {tex}\triangle \mathrm{DBE} \sim \triangle \mathrm{DEC}{/tex} (Both the ∆s are on the same base and between the same || lines).....(5)
Area({tex}\triangle{/tex}DBE) = Area({tex}\triangle{/tex}DEC) (If the two triangles are similar their areas are equal)
{tex}\frac{AD}{DB} = \frac{AE}{EC}{/tex} [from equation 3,4 and 5]
Hence proved.

https://examin8.com Test

Related Questions

Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
(A + B )²
  • 1 answers
X-y=5
  • 1 answers
Prove that root 8 is an irration number
  • 2 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Venu Gopal has twice
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App