No products in the cart.

Calculate the area of the designed …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Calculate the area of the designed region in fig.12.34 common between the two quadrant of circles of radius 8 cm each
  • 1 answers

Sia ? 6 years, 6 months ago

In right triangle ADC,
AC2 = AD2 + CD2.........[By Pythagoras theorem]
= 82 + 82 = 64 + 64 = 128
{tex}\Rightarrow {/tex} AC = {tex}\sqrt {128} {/tex} {tex}\Rightarrow {/tex} AC = {tex}8\sqrt 2 {/tex}
Draw BM {tex} \bot {/tex} AC

Then, AM = MC = {tex}\frac{1}{2}AC{/tex}
= {tex}\frac{1}{2}\left( {8\sqrt 2 } \right) = 4\sqrt 2 {/tex} cm
In right triangle AMB
AB2 = AM2 + BM2 ...........By Pythagoras theorem]
{tex}\Rightarrow {/tex} {tex}{\left( 8 \right)^2} = {\left( {4\sqrt 2 } \right)^2} + B{M^2}{/tex}
{tex}\Rightarrow {/tex} 64 = 32 + BM2
{tex}\Rightarrow {/tex} BM2 = 64 - 32
{tex}\Rightarrow {/tex} BM2 = 64 - 32
{tex}\Rightarrow {/tex} BM2 = 32
{tex}\Rightarrow {/tex} BM ={tex}\sqrt {32} {/tex} = {tex}4\sqrt 2 {/tex} cm
{tex}\therefore {/tex} Area of {tex}\triangle {/tex} ABC={tex}\frac{{AC \times BM}}{2}{/tex}
= {tex}\frac{{8\sqrt 2 \times 4\sqrt 2 }}{2}{/tex} = 32 cm2
{tex}\therefore {/tex} Shaded Area = {tex}\frac{{90}}{{360}}\pi {(8)^2} - 32{/tex}
= {tex}16\pi - 32{/tex}
= {tex}16 \times \frac{{22}}{7} - 32 = \frac{{352}}{7} - 32{/tex}
= {tex}\frac{{352 - 224}}{7} = \frac{{128}}{7}\,c{m^2}{/tex}
{tex}\therefore {/tex} Area of the designed region
= {tex}2 \times \frac{{128}}{7} = \frac{{256}}{7}\,c{m^2}{/tex}

https://examin8.com Test

Related Questions

sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Prove that root 8 is an irration number
  • 2 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
X-y=5
  • 1 answers
Venu Gopal has twice
  • 0 answers
(A + B )²
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App