Calculate the area of the designed …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Vanshika Bhatnagar 1 year, 5 months ago
- 2 answers
Posted by Sahil Sahil 1 year, 5 months ago
- 2 answers
Posted by Hari Anand 6 months, 2 weeks ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 4 weeks ago
- 0 answers
Posted by Kanika . 1 month, 1 week ago
- 1 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 4 weeks ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
In right triangle ADC,

AC2 = AD2 + CD2.........[By Pythagoras theorem]
= 82 + 82 = 64 + 64 = 128
{tex}\Rightarrow {/tex} AC = {tex}\sqrt {128} {/tex} {tex}\Rightarrow {/tex} AC = {tex}8\sqrt 2 {/tex}
Draw BM {tex} \bot {/tex} AC
Then, AM = MC = {tex}\frac{1}{2}AC{/tex}
= {tex}\frac{1}{2}\left( {8\sqrt 2 } \right) = 4\sqrt 2 {/tex} cm
In right triangle AMB
AB2 = AM2 + BM2 ...........By Pythagoras theorem]
{tex}\Rightarrow {/tex} {tex}{\left( 8 \right)^2} = {\left( {4\sqrt 2 } \right)^2} + B{M^2}{/tex}
{tex}\Rightarrow {/tex} 64 = 32 + BM2
{tex}\Rightarrow {/tex} BM2 = 64 - 32
{tex}\Rightarrow {/tex} BM2 = 64 - 32
{tex}\Rightarrow {/tex} BM2 = 32
{tex}\Rightarrow {/tex} BM ={tex}\sqrt {32} {/tex} = {tex}4\sqrt 2 {/tex} cm
{tex}\therefore {/tex} Area of {tex}\triangle {/tex} ABC={tex}\frac{{AC \times BM}}{2}{/tex}
= {tex}\frac{{8\sqrt 2 \times 4\sqrt 2 }}{2}{/tex} = 32 cm2
{tex}\therefore {/tex} Shaded Area = {tex}\frac{{90}}{{360}}\pi {(8)^2} - 32{/tex}
= {tex}16\pi - 32{/tex}
= {tex}16 \times \frac{{22}}{7} - 32 = \frac{{352}}{7} - 32{/tex}
= {tex}\frac{{352 - 224}}{7} = \frac{{128}}{7}\,c{m^2}{/tex}
{tex}\therefore {/tex} Area of the designed region
= {tex}2 \times \frac{{128}}{7} = \frac{{256}}{7}\,c{m^2}{/tex}
0Thank You