No products in the cart.

Question 15- In the given figure, …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Question 15- In the given figure, O is the centre of the circle with AC = 24 cm, AB = 7 cm and ∠ B O D = 90 ∘ . Find the area of the shaded region. Important 4 Marks Questions
  • 1 answers

Sia ? 6 years, 6 months ago

In right-angled {tex}\triangle {/tex}BAC,
By using pythagoras theorem, we get
CB2 = AC2 + AB2
{tex}= 24^2 + 7^2\\= 576 + 49\\= 625{/tex}
{tex}\Rightarrow C B = \sqrt { 625 }{/tex}
{tex}= 25 \ cm{/tex}
{tex}\Rightarrow O C = \frac { 1 } { 2 } C B{/tex}
{tex}= \frac { 25 } { 2 } \mathrm { cm }{/tex}
So, radius of the circle {tex}= 12.5 cm{/tex}
Now, Area of {tex}\triangle {/tex}BAC
{tex}= \frac { 1 } { 2 } \times A C \times A B{/tex}
{tex}= \frac { 1 } { 2 } \times 24 \times 7 {/tex}
= 84 cm2
Area of the circle= {tex}3.14 \times 12.5 \times 12.5{/tex}
= 490.625 cm2
Area of quadrant COD
{tex}= \frac { 1 } { 4 } \times 3.14 \times 12.5 \times 12.5{/tex}
= 122.66 cm2
Now, area of the shaded region
= Area of the circle - Area of {tex}\triangle {/tex}BAC - Area of quadrant COD
= {tex}490.625 - 84 - 122.66{/tex}
= 283.96 cm2

https://examin8.com Test

Related Questions

Prove that root 8 is an irration number
  • 2 answers
Venu Gopal has twice
  • 0 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
(A + B )²
  • 1 answers
X-y=5
  • 1 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App