Question 15- In the given figure, …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Kanika . 1 month, 1 week ago
- 1 answers
Posted by Sahil Sahil 1 year, 5 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 4 weeks ago
- 1 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 5 months ago
- 2 answers
Posted by Hari Anand 6 months, 2 weeks ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 4 weeks ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
In right-angled {tex}\triangle {/tex}BAC,
By using pythagoras theorem, we get
CB2 = AC2 + AB2
{tex}= 24^2 + 7^2\\= 576 + 49\\= 625{/tex}
{tex}\Rightarrow C B = \sqrt { 625 }{/tex}
{tex}= 25 \ cm{/tex}
{tex}\Rightarrow O C = \frac { 1 } { 2 } C B{/tex}
{tex}= \frac { 25 } { 2 } \mathrm { cm }{/tex}
So, radius of the circle {tex}= 12.5 cm{/tex}
Now, Area of {tex}\triangle {/tex}BAC
{tex}= \frac { 1 } { 2 } \times A C \times A B{/tex}
{tex}= \frac { 1 } { 2 } \times 24 \times 7 {/tex}
= 84 cm2
Area of the circle= {tex}3.14 \times 12.5 \times 12.5{/tex}
= 490.625 cm2
Area of quadrant COD
{tex}= \frac { 1 } { 4 } \times 3.14 \times 12.5 \times 12.5{/tex}
= 122.66 cm2
Now, area of the shaded region
= Area of the circle - Area of {tex}\triangle {/tex}BAC - Area of quadrant COD
= {tex}490.625 - 84 - 122.66{/tex}
= 283.96 cm2
0Thank You