No products in the cart.

An open metal bucket is in …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

An open metal bucket is in the shape of a frustum of a cone, mounted on a hollow cylindrical base made of the same metallic sheet. The diameter of the two circular ends of the bucket are 45 cm and 25 cm, the total vertical height of the bucket is 40 cm and that of the cylindrical base is 6 cm. Find the area of the metallic sheet used to make the bucket. Also, find the volume of water the bucket can hold, in litres.
  • 1 answers

Sia ? 6 years, 6 months ago


Area of metallic sheet used = curved surface area of Frustum + curved surface area of Cylinder + area of circular Base.
Diameter of the bigger circular end = 45 cm
Radius, r1 = {tex}\frac{45}2{/tex}= 22.5 cm {tex}{/tex}
Diameter of the smaller circular end = 25 cm
Radius, r2{tex}\frac{{25}}{2} = 12.5\ cm{/tex}
Height of the frustum, h = Total height of the bucket (H) - Height of the circular base (h1)
{tex}={/tex} 40 - 6 = 34 cm
Slant Height of frustrum (l) {tex}=\sqrt { h ^ { 2 } + \left( r_ 1 - r_ 2 \right) ^ { 2 } }{/tex}
{tex}\Rightarrow l= \sqrt { 34 ^ { 2 } + ( 22.5 - 12.5 ) ^ { 2 } }{/tex}
{tex}\Rightarrow l=\sqrt { 1156 + ( 10 ) ^ { 2 }}{/tex}
{tex}\Rightarrow l=\sqrt { 1156 + 100}{/tex}
{tex}\Rightarrow l=\sqrt { 1256 }{/tex}
{tex}\Rightarrow{/tex} Slant Height, l = 35.44 cm
Curved surface area of Frustum = {tex}\pi ( r_1 + r _2 )l{/tex}
{tex}\frac{{22}}{7} \times (22.5 + 12.5) \times 35.44{/tex}
{tex}\Rightarrow{/tex}{tex}\frac{{22}}{7} \times 35 \times 35.44{/tex}
= 3898.4 cm2
Area of Circular Base with radius {tex}\frac{{25}}{2} = 12.5{/tex} is given by,
Area of circular base = {tex}\pi r_2^2{/tex}
{tex}{/tex}{tex}=\frac{{22}}{7} \times 12.5 \times 12.5{/tex}
= 491.07 cm2
Curved surface area of Cylinder = {tex}2\pi r_2h_1{/tex}
{tex}={/tex} {tex}2 \times \frac{{22}}{7} \times 12.5 \times 6{/tex}
{tex}={/tex} 471.428 cm2
Area of metallic sheet used = 3898.4 cm2 + 491.07 cm2 + 471.428 cm2
= 4860.898 cm2
Volume of water in bucket = Volume of Frustrum
{tex}\frac13\pi h(r_1^2\;+\;r_2^2\;+\;r_1r_2){/tex}
{tex}\frac13\times\frac{22}7\times34\;(22.5^2\;+\;12.5^2\;+\;22.5\times12.5){/tex} = 33615.48 cm3
Now, 1 litre = 1000 cm
Thus, Volume of water in bucket in litres = 33.62 litres
 

https://examin8.com Test

Related Questions

Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
(A + B )²
  • 1 answers
X-y=5
  • 1 answers
Venu Gopal has twice
  • 0 answers
Prove that root 8 is an irration number
  • 2 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App