in a given figure o is …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Parinith Gowda Ms 3 months, 4 weeks ago
- 1 answers
Posted by Kanika . 1 month, 2 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 4 weeks ago
- 0 answers
Posted by Hari Anand 6 months, 3 weeks ago
- 0 answers
Posted by Sahil Sahil 1 year, 5 months ago
- 2 answers
Posted by Vanshika Bhatnagar 1 year, 5 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Clearly{tex}\angle O P T{/tex} = 90°
Applying Pythagoras in{tex}\Delta O P T{/tex}, we have
OT2=OP2 +PT2
{tex}\Rightarrow {/tex}132 = 52 + PT2
{tex}\Rightarrow {/tex} PT2 = 169 - 25 = 144
{tex}\Rightarrow {/tex} PT = 12 cm
Since lengths of tangents drawn from a point to a circle are equal. Therefore,
AP = AE = x(say)
{tex}\Rightarrow {/tex} AT = PT - AP = (12 - x)cm
Since AB is the tangent to the circle E. Therefore, {tex}O E \perp A B{/tex}
{tex}\Rightarrow \quad \angle O E A = 90 ^ { \circ }{/tex}
{tex}\Rightarrow \quad \angle A E T = 90 ^ { \circ }{/tex}[Applyng Pythagoras Theorem in {tex}\Delta A E T{/tex}]
{tex}\Rightarrow {/tex} (12 - x)2 = x2 + (13 - 5)2
{tex}\Rightarrow {/tex} 144 - 24x + x2 = x2 + 64
{tex}\Rightarrow {/tex} 24x = 80
{tex}\Rightarrow \quad x = \frac { 10 } { 3 } \mathrm { Cm }{/tex}
Similarly, BE {tex}= \frac { 10 } { 3 } \mathrm { cm }{/tex}
{tex}\therefore{/tex} AB = AE + BE = {tex}\left( \frac { 10 } { 3 } + \frac { 10 } { 3 } \right) \mathrm { cm }{/tex}
{tex}= \frac { 20 } { 3 } \mathrm { cm }{/tex}
0Thank You