In the given figure PA,QB and …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Rohit Dixit 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Kanika . 1 month ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
In the given figure we have {tex}P A \perp A C{/tex} and {tex}Q B \perp A C{/tex}.
{tex}\Rightarrow Q B \| P A{/tex}
In {tex}\triangle PAC{/tex} and {tex}\triangle Q B C{/tex}, we have
{tex}\angle QCB= \angle PCA{/tex} ( Common )
{tex}\angle QBC= \angle PAC{/tex} ( both are 90o ).
So by AA similarity rule , {tex}\triangle Q B C \sim \triangle P A C{/tex}.
{tex}\therefore \frac { Q B } { P A } = \frac { B C } { A C }{/tex}
{tex}\Rightarrow \frac { z } { x } = \frac { b } { a + b }{/tex}. .....................................(i) [by the property of similar triangles]
In {tex}\triangle RAC{/tex} , {tex}Q B \| R C{/tex}.
So, {tex}\triangle Q B A \sim \triangle R C A{/tex}.
{tex}\therefore \frac { Q B } { R C } = \frac { A B } { A C }{/tex}
{tex}\Rightarrow \frac { z } { y } = \frac { a } { a + b }{/tex}. .....................................(ii) [by the property of similar triangles]
Form (i) and (ii), we obtain
{tex}\frac { z } { x } + \frac { z } { y }{/tex}{tex}= \left( \frac { b } { a + b } + \frac { a } { a + b } \right) = 1{/tex}
{tex}\Rightarrow \quad \frac { z } { x } + \frac { z } { y } = 1{/tex}
{tex}\Rightarrow \frac { 1 } { x } + \frac { 1 } { y } = \frac { 1 } { z }{/tex}
or {tex}\frac { 1 } { x } + \frac { 1 } { y } = \frac { 1 } { z }{/tex}.
Hence proved.
0Thank You