In a given figure ABC is …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 5 months ago
In a right triangle BAC,

BC2 = AB2 + AC2 …….. By Pythagoras theorem
= (14)2 + (14)2 = 2(14)2
{tex}\Rightarrow{/tex} BC = {tex}14\sqrt2{/tex} cm
{tex}\Rightarrow{/tex} Radius of the semicircle
= {tex}\;\frac{14\sqrt2}2{/tex} cm = {tex}7\sqrt2{/tex} cm
Required area = Area BPCQB
= Area BCQB – Area BCPB
= Area BCQB – (Area BACPB - Area of {tex}\Rightarrow{/tex}BAC)
{tex}= \;\frac{180}{360}\mathrm\pi\left(7\sqrt2\right)^2\;-\left[\frac{90}{360}\mathrm\pi(14)^2\;-\frac{14\times\;14}2\right]{/tex}
{tex}\;\frac12\times\frac{22}7\times98\;-\left[\frac14\times\frac{22}7\times196\;-98\right]{/tex}
= 154 – (154 – 98) = 98 cm2
0Thank You