The perpendicular from A on side …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Kanika . 1 month, 2 weeks ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 5 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 4 weeks ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 4 weeks ago
- 1 answers
Posted by Hari Anand 6 months, 3 weeks ago
- 0 answers
Posted by Sahil Sahil 1 year, 5 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Given: The perpendicular from A on side BC of an{tex}\vartriangle {/tex} ABC intersect BC at Such that BC = 3CD

To prove:2AB2 = 2AC2 + BC2
Proof:In right triangle ADB,
AB2 = AD2 + BC2 (1).......[By Pythagoras theorem]
In right triangle ADC,
AC2 = AD2 + CD2 (2).....[By Pythagoras theorem]
Subtracting (2) from (1), we get
AB2 - AC2 = BD2 - CD2
= (BD + CD)(BD - CD)
= (BC)(3CD - CD) ........ {tex}\because {/tex} BD = 3CD(given)
= (BC)(2CD) = 2(BC)(CD)
=2(BC){tex}\left( {\frac{1}{4}BC} \right){/tex}
DB = 3CD
{tex} \Rightarrow \frac{{BD}}{{CD}} = 3{/tex}
{tex} \Rightarrow \frac{{DB}}{{CD}} + 1{/tex}
= 3 + 1
{tex} \Rightarrow \frac{{DB + CD}}{{CD}}=4{/tex}
{tex}\Rightarrow \frac{{BC}}{{CD}} = 4{/tex}
{tex}\Rightarrow CD = \frac{1}{4}BC = B{C^2}{/tex}
{tex}\Rightarrow {/tex} 2(AB2 - AC2) = BC2
{tex}\Rightarrow {/tex} 2AB2 - 2AC2 = BC2
{tex}\Rightarrow {/tex} 2AB2 = 2AC2 + BC2
0Thank You