No products in the cart.

A vertically straight tree 15m high …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

A vertically straight tree 15m high is broken by the wind in such a way that it's top touched the ground and make an angle of 60 degrees with the ground. At what height from the ground did the tree break.
  • 1 answers

Sia ? 6 years, 2 months ago

 
The height of the tree (DB) = 15 m
Suppose it broke at A and its top D touches the ground at C.

Suppose AB = h Then AD = AC = (15 - h) m
In {tex}\Delta ABC{/tex}
{tex}\sin {60^o} = \frac{{AB}}{{AC}}{/tex}
{tex} \Rightarrow \frac{{\sqrt 3 }}{2} = \frac{h}{{15 - h}}{/tex}
{tex} \Rightarrow 2h = 15\sqrt 3 - \sqrt 3 h{/tex}
{tex} \Rightarrow 2h + \sqrt 3 h = 15\sqrt 3 {/tex}
{tex} \Rightarrow h\left( {2 + \sqrt 3 } \right) = 15\sqrt 3 {/tex}
{tex} \Rightarrow h = \frac{{5\sqrt 3 }}{{2 + \sqrt 3 }}{/tex}
{tex} \Rightarrow h = \frac{{5\sqrt 3 }}{{2 + \sqrt 3 }} \times \frac{{2 - \sqrt 3 }}{{2 - \sqrt 3 }}{/tex}
{tex} \Rightarrow h = \frac{{30\sqrt 3 - 45}}{{4 - 3}}{/tex}
{tex} \Rightarrow h = 15\left( {2\sqrt 3 - 3} \right){/tex}
{tex} \Rightarrow h = 15\left[ {2 \times 1.73 - 3} \right]{/tex}
{tex} \Rightarrow h = 15\left[ {3.46 - 3} \right]{/tex}
{tex} \Rightarrow h = 15 \times 0.46{/tex}
{tex} \Rightarrow h = 6.9m{/tex}
{tex}\therefore{/tex} Height above the ground from where the tree broke is 6.9 meter.

http://mycbseguide.com/examin8/

Related Questions

sin60° cos 30°+ cos60° sin 30°
  • 2 answers
X-y=5
  • 1 answers
Venu Gopal has twice
  • 0 answers
Prove that root 8 is an irration number
  • 2 answers
(A + B )²
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App