Ans.

Given: ABCD is a parallelogram in which points P and Q trisects the BC.
\(=> BP = PQ = QC = {1\over 3}BC\)
To prove: \(ar (\triangle APQ) = ar (\triangle DPQ) = {1\over 6} ar(\|gm \space ABCD)\)
Construction : Through P and Q, draw PR and QS parallel to AB. Now PQRS is a parallelogram and its base \( PQ = {1\over 3} BC\)
Proof :
Now, \(\triangle APD \space and \space \triangle AQD\) lie on the same base AD and between the same parallel AD and BC.
\(ar (\triangle APD) \space = ar \space( \triangle AQD)\) .......... (1)
Subtracting \(ar (\triangle AOD)\) from both sides, we get
\(=> ar (\triangle APD) - ar (\triangle AOD) \space = ar \space( \triangle AQD) -ar (\triangle AOD) \)
\(=> ar (\triangle APO) = ar (\triangle OQD) \) ............... (2)
Adding \(ar (\triangle OPQ)\) on both sides in (2), we get
\(=> ar (\triangle APO) + ar (\triangle OPQ) = ar (\triangle OQD) + ar (\triangle OPQ)\)
\(=> ar (\triangle APQ) = ar (\triangle DPQ)\) ....... (3)
Again, triangle APQ and parallelogram PQSR are on the same base PQ and between same parallels PQ and AD
\(ar (\triangle APQ) ={1\over2} ar (\|gm \space PQRS)\) ........ (4)
Now,
\({ar(\| gm \space ABCD )\over ar(\| gm \space PQRS )} = {BC \times height\over PQ\times height } = {3PQ\over PQ} = 3\)
\(=> ar(\| gm \space PQRS ) = {1\over 3} ar(\| gm \space ABCD ) \) ....... (5)
\(=> ar (\triangle APQ) ={1\over2} \times {1\over 3}ar (\|gm \space ABCD)\)
\(=> ar (\triangle APQ) ={1\over6}ar (\|gm \space ABCD)\) ....... (6)
From (3) and (6)
\(=> ar (\triangle APQ) = ar (\triangle DPQ)={1\over6}ar (\|gm \space ABCD)\)
Hence Proved
Naveen Sharma 8 years, 6 months ago
Ans.
Given: ABCD is a parallelogram in which points P and Q trisects the BC.
\(=> BP = PQ = QC = {1\over 3}BC\)
To prove: \(ar (\triangle APQ) = ar (\triangle DPQ) = {1\over 6} ar(\|gm \space ABCD)\)
Construction : Through P and Q, draw PR and QS parallel to AB. Now PQRS is a parallelogram and its base \( PQ = {1\over 3} BC\)
Proof :
Now, \(\triangle APD \space and \space \triangle AQD\) lie on the same base AD and between the same parallel AD and BC.
\(ar (\triangle APD) \space = ar \space( \triangle AQD)\) .......... (1)
Subtracting \(ar (\triangle AOD)\) from both sides, we get
\(=> ar (\triangle APD) - ar (\triangle AOD) \space = ar \space( \triangle AQD) -ar (\triangle AOD) \)
\(=> ar (\triangle APO) = ar (\triangle OQD) \) ............... (2)
Adding \(ar (\triangle OPQ)\) on both sides in (2), we get
\(=> ar (\triangle APO) + ar (\triangle OPQ) = ar (\triangle OQD) + ar (\triangle OPQ)\)
\(=> ar (\triangle APQ) = ar (\triangle DPQ)\) ....... (3)
Again, triangle APQ and parallelogram PQSR are on the same base PQ and between same parallels PQ and AD
\(ar (\triangle APQ) ={1\over2} ar (\|gm \space PQRS)\) ........ (4)
Now,
\({ar(\| gm \space ABCD )\over ar(\| gm \space PQRS )} = {BC \times height\over PQ\times height } = {3PQ\over PQ} = 3\)
\(=> ar(\| gm \space PQRS ) = {1\over 3} ar(\| gm \space ABCD ) \) ....... (5)
\(=> ar (\triangle APQ) ={1\over2} \times {1\over 3}ar (\|gm \space ABCD)\)
\(=> ar (\triangle APQ) ={1\over6}ar (\|gm \space ABCD)\) ....... (6)
From (3) and (6)
\(=> ar (\triangle APQ) = ar (\triangle DPQ)={1\over6}ar (\|gm \space ABCD)\)
Hence Proved
2Thank You